вторник, 15 марта 2011
добрый день, помогите пожалуйста найти промежутки выпуклости и вогнутости функции.Вот функция y=log(по основ 2)(4-x^2)/(sqrt(x-1)), я нашла её производную, доказала что она на всем промежутке области определения отрицательна. Вопрос: нет ли какой-нибудь возможности не находить вторую производную от y'= -(4*x^2-4*x+log2(4-x^2)*ln2*(4-x^2)) / (2*(x-1)*ln2*(4-x^2)*sqrt(x-1)) чтобы узнать промежутки выпуклости, т.к. это мягко говоря очень затруднительно?
Диагональ AC прямоугольника ABCD=3см и составляет со стороной AD угол 37. Найдите площадь прямоугольника ABCD/
И еще одна
Высота BD прямоугольного треугольника ABC равна 24см и отсекает от гипотенузы AC отрезок DC, равный 18 см. найдите AB и cos A.
И еще одна
Высота BD прямоугольного треугольника ABC равна 24см и отсекает от гипотенузы AC отрезок DC, равный 18 см. найдите AB и cos A.
Иногда я делаю ошибки, иногда несу чушь. Но вы должны различать.

Борис Германович Зив родился 25 февраля 1928 года в Ленинграде. В 1945 году единственным из школьников Ленинграда закончил школу с золотой медалью. Тогда же поступил в Ленинградский Политехнический институт. Позже служил в военно-морском флоте в Североморске. С 1953 года преподавал математику и физику в воинской части в Ижоре. Одновременно с этим учился в Университете на физическом факультете, закончив который преподавал с 1955 года в 217-й, а позже в 222-й школе. В 1968 году перешел на работу в школу №524 Московского района, в которой непрерывно работал до 2002 года.
Его первые печатные работы появились в 1972 году.
С 1975 года публикует свои знаменитые дидактические материалы по геометрии.
Позже — дидактические материалы по всему курсу алгебры и анализа средней школы.
В 1990 году получил звание Заслуженный учитель РФ.
Умер 5 марта 2011 года в городе Баден-Баден (Германия).
Наши соболезнования родным и близким.
Неопределенный интеграл от 1+sinx/cos^2 x. Методом универсальной подстановки дохожу до дроби 1+2t*2dt/(1-t^2)^2 и зависаю
.Имеются 5 урн: в двух урнах – по 2 белых и 1 черному шару, в одной – 10 черных и в двух - по 3 белых и 1 черному шару. Найти вероятность того, что вынутый из наудачу взятой урны шар окажется белым.
1/5 * 2/3 + 1/5 * 2/3 + 1/5*0+ 1/5*3/4+1/5*3/4 = 0.567 Вот решения
1/5 * 2/3 + 1/5 * 2/3 + 1/5*0+ 1/5*3/4+1/5*3/4 = 0.567 Вот решения
Нужно что нибудь про математическую индукцию и рекурсивные формулы(например числа фибоначчи) (может быть рекурентные я не уверен как правельно) хотелось бы примеры с решениями и без а не теорию.
Спасибо!
Спасибо!
`int(cos^9(x)*sin^10(x))dx`
Если применять формулу:
`int(cos^m(x)*sin^n(x))dx`
То это очень долго, что можно ещё сделать?
Если применять формулу:
`int(cos^m(x)*sin^n(x))dx`
То это очень долго, что можно ещё сделать?
понедельник, 14 марта 2011
Воля - это то, что заставляет тебя побеждать, когда рассудок говорит тебе, что ты повержен. (c)
прекрасно осознаю наглость своей просьбы, но ибо мое положение катастрофично, молю о помощи
мне нужно сдать курсовик через неделю, а я ничего не смыслю в интегралах.. методы знаю, ф-лы есть, но сажусь решать.. и я 0
в общем, прошу помочь, хотя в чем то. пожалуйста!
здесь с 1 по 8 задание решить неопр. интеграл, в 9 - определенный
заранее огромное спасибо тем кто откликнется
здесь задание:
1. int(x^2*dx/(x^6+9)
2. int((x^2*e^x)*dx)
3. int(x*dx/(2*x^2+x+5))
4. int((sin(2*x)*sin(3*x)*dx)
5. int((x+2)*dx/(x^3-x^2))
6. int((2*x-8)*dx/sqr(1-x-x^2))
7. int(((tan(x-3))^3*dx)
8. int((sqr(x)*dx/(x-*x^(2/3))
9. int(dx/(x^2+x))
мне нужно сдать курсовик через неделю, а я ничего не смыслю в интегралах.. методы знаю, ф-лы есть, но сажусь решать.. и я 0
в общем, прошу помочь, хотя в чем то. пожалуйста!
здесь с 1 по 8 задание решить неопр. интеграл, в 9 - определенный
заранее огромное спасибо тем кто откликнется
здесь задание:
1. int(x^2*dx/(x^6+9)
2. int((x^2*e^x)*dx)
3. int(x*dx/(2*x^2+x+5))
4. int((sin(2*x)*sin(3*x)*dx)
5. int((x+2)*dx/(x^3-x^2))
6. int((2*x-8)*dx/sqr(1-x-x^2))
7. int(((tan(x-3))^3*dx)
8. int((sqr(x)*dx/(x-*x^(2/3))
9. int(dx/(x^2+x))
Помогите пожалуйста решить пару задачек
1 найти частное решение CДУ методом операционного исчисления удовлетворяющее начальным условиям
х'=-2x-2y-4z
y'=-2x+y-2z
z'=5x+2y+7z
x(0)=1; у(0)=1; z(0)=1
2 дана функция z=z(x,y) точка А(х0,у0) и вектор а. найти grad z в точке А и производную в точке А по напрвлению вектора а
z=2x^2+3xy+y^2
A(2,1)
a=3i-4j
Заранее премного благодарна
1 найти частное решение CДУ методом операционного исчисления удовлетворяющее начальным условиям
х'=-2x-2y-4z
y'=-2x+y-2z
z'=5x+2y+7z
x(0)=1; у(0)=1; z(0)=1
2 дана функция z=z(x,y) точка А(х0,у0) и вектор а. найти grad z в точке А и производную в точке А по напрвлению вектора а
z=2x^2+3xy+y^2
A(2,1)
a=3i-4j
Заранее премного благодарна
надо решить неравенство методом интервалов (х+1) √(x*x+1) >x*х-1
(x*x+1)- это все под корнем.
пожалуйста, помогите
(x*x+1)- это все под корнем.
пожалуйста, помогите
беру свои слова обратно,я новые придумала.
6 ученикам надо разделиться на 2 команды по 3 человека. Сколько разных видов можно сделать ?
помогите пожалуйста
Нужно посчитать sin0,3 c точностью до 10^-6 по формуле Тейлора...я совершенно не понимаю ее....помогите с чего начать и чем закончить
`((a \ \ \ b \ \ \ ... \ \ \ b),(b \ \ \ a \ \ \ ... \ \ \ b),(...),(b \ \ \ b \ \ \ ... \ \ \ a))`
Подскажите, как можно такой определитель посчитать?
Подскажите, как можно такой определитель посчитать?
С трудом,но доходит.
Доброе время суток!
Задание:Найдите промежутки убывания для функции `y=((1)/(3))^x`
Мне сначала найти производную? А ведь производная равна нулю..
А затем на числовой прямой у меня получилось вот так:
рисунок
И какой промежуток будет ответом?
`(-infty;+infty)`?
Задание:Найдите промежутки убывания для функции `y=((1)/(3))^x`
Мне сначала найти производную? А ведь производная равна нулю..
А затем на числовой прямой у меня получилось вот так:
рисунок
И какой промежуток будет ответом?
`(-infty;+infty)`?
Мастерская планировала затратить за два месяца 20 тыс. рублей на изготовление партии деталей. Однако затраты на изготовление одной детали в первом месяце были больше планируемых на 20%, а во втором месяце-на 25%. В среднем, затраты на всю партию деталей оказались на 22% больше планируемых.Сколько рублей затрачено на изготовление деталей в каждом месяце?
в кубе АВСДА1В1С1Д1 ПОСТРОЙТЕ И НАЙДИТЕ ЛИНЕЙНЫЙ УГОЛ ДВУГРАННОГО УГЛА МЕЖДУ ПЛОСКОСТЯМИ СЕЧЕНИЙ АВ1C1D B CB1А1D примерно представляю как эти плоскости будут пересекаться по прямой В1D, понятно что к ней надо проводить перпендикуляры, но эти перпендикуляры не будут сходиться на этой прямой ведь так? а как тогда найти между ними угол?
подскажите, пожалуйста, как решить задачу:
нужно доказать, что [0,1] эквивалентен (0, 1]. Т.е. нужно придумать биективное отображение элементов отрезка в элементы полуинтервала.... ничего в голову не приходит, что за отображение взять... как-то вот 0 мешается, некуда его перевести...
нужно доказать, что [0,1] эквивалентен (0, 1]. Т.е. нужно придумать биективное отображение элементов отрезка в элементы полуинтервала.... ничего в голову не приходит, что за отображение взять... как-то вот 0 мешается, некуда его перевести...

14 марта во всем мире отмечается День числа Пи, посвященный одной из самых известных математических констант.
Число Пи является иррациональным числом, выражающим отношение длины окружности к длине ее диаметра. Впервые греческую букву "пи" для обозначения этого числа использовал британский математик Уильям Джонс в 1706 году, а общепринятым оно стало после работ Леонарда Эйлера в 1737 году.
Самое простое рациональное приближение константы дал еще Архимед, определив его как 22 / 7. В цифровом выражении Пи начинается как 3,141592 и имеет бесконечную математическую продолжительность. В настоящее время вычислено 2 699 999 990 знаков после запятой.
Мировой рекорд по запоминанию числа Пи установил 17 июня 2009 года украинский нейрохирург, доктор медицинских наук, профессор Андрей Слюсарчук, удержавший в памяти 30 млн. его знаков (20 томов текста).
Считается, что праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу, обративший внимание на то, что 14 марта (в американском написании – 3.14) ровно в 01:59 дата и время совпадут с первыми разрядами числа Пи = 3,14159.
14 марта 1879 года также родился создатель теории относительности Альберт Эйнштейн, что делает этот день еще более привлекательным для всех любителей математики.
Кроме того, математики отмечают и день приближенного значения Пи, который приходится на 22 июля (22/7 в европейском формате записи даты).
"В это время читают хвалебные речи в честь числа Пи и его роли в жизни человечества, рисуют антиутопические картины мира без Пи, едят пироги с изображением греческой буквы Пи или с первыми цифрами самого числа, решают математические головоломки и загадки, а также водят хороводы", – пи-шет Википедия. От себя редакция портала ЮГА.ру рекомендует отмечать Всемирный день числа Пи также пи-ццей и пи-вом.
Как сообщали ЮГА.ру, недавно профессор физики из Калифорнийского технологического института, доктор Майкл Хартл заявил, что выбор числа Пи является просто ошибкой, и предложил использовать вместо него новую константу Тау.
Отсюда
Mathematical Pi (Full Song)
С трудом,но доходит.