Задача следующая:
Случайные величины `xi` и `eta` независимы и распределены по равномерным законам `R(0,1)` и `R(1,2)` соответственно. Найдите плотность распределения случайной величины `zeta=5xi+3` и дисперсию `D(5xi+3eta)` .
Мне кажется, что авторы задачи допустили опечатку в том месте, где просят найти плотность распределения случайной величины `zeta=5xi+3`, а не случайной величины `zeta=5xi+3eta`. Ну ладно, будем решать так, как есть.
С дисперсией проблем у меня не возникло. Я нашел дисперсии у обоих равномерных величин по формуле для дисперсии равномерного распределения `DX=(b-a)^2/12` и применил свойство дисперсии:
`D(5xi+3eta)=5^2D(xi)+3^2D(eta)=25*1/12+9*1/12=17/6`
А вот как быть с плотностью вероятности, не знаю. Прошу помощи.