товарищи решили внедрить алгоритмы теории игр в систему поступления в вузы... и вроде должно вступить в силу в этом году...
рассказывают интересно, но понимается далеко не сразу...
но после слов "про слухи" вспомнилась шутка от одесских квнщиков 88 года...
- говорят в вузы принимают по новому...
- говорят по новому... принимают по старому...

Смирнова И. М. Геометрия. 7 класс : учебник для общеобразовательных организаций
Смирнова И. М. Геометрия. 8 класс : учебник для общеобразовательных организаций
Смирнова И. М. Геометрия. 9 класс : учебник для общеобразовательных организаций
Смирнова И. М. Геометрия. 7-9 классы : учебник для общеобразовательных организаций
Смирнова И. М. Геометрия. 10-11 классы : учебник для общеобразовательных организаций (базовый уровень)
Смирнова И. М. Геометрия. 10 класс : учебник для общеобразовательных организаций (базовый и углублённый уровни)
Смирнова И. М. Геометрия. 11 класс : учебник для общеобразовательных организаций (базовый и углублённый уровни)
mnemozina.ru
Four spheres of radius 1 are mutually tangent. What is the radius of the smallest sphere
containing them?
www.ruf.rice.edu/~eulers/
izho.kz
1 In an alphabet of $n$ letters, is $syllable$ is any ordered pair of two (not necessarily distinct) letters. Some syllables are considered $indecent$. A $word$ is any sequence, finite or infinite, of letters, that does not contain indecent syllables. Find the least possible number of indecent syllables for which infinite words do not exist.
2 Circles $\Omega$ and $\Gamma$ meet at points $A$ and $B$. The line containing their centres intersects $\Omega$ and $\Gamma$ at point $P$ and $Q$, respectively, such that these points lie on same side of the line $AB$ and point $Q$ is closer to $AB$ than point $P$. The circle $\delta$ lies on the same side of the line $AB$ as $P$ and $Q$, touches the segment $AB$ at point $D$ and touches $\Gamma$ at point $T$. The line $PD$ meets $\delta$ and $\Omega$ again at points $K$ and $L$, respectively. Prove that $\angle QTK=\angle DTL$
3 Positive integer $d$ is not perfect square. For each positive integer $n$, let $s(n)$ denote the number of digits $1$ among the first $n$ digits in the binary representation of $\sqrt{d}$ (including the digits before the point). Prove that there exists an integer $A$ such that $s(n)>\sqrt{2n}-2$ for all integers $n\ge A$
4 Ten distinct positive real numbers are given and the sum of each pair is written (So 45 sums). Between these sums there are 5 equal numbers. If we calculate product of each pair, find the biggest number $k$ such that there may be $k$ equal numbers between them.
5 We are given $m\times n$ table tiled with $3\times 1$ stripes and we are given that $6 | mn$. Prove that there exists a tiling of the table with $2\times 1$ dominoes such that each of these stripes contains one whole domino.
6 Let $G$ be the centroid of triangle $ABC$. Find the biggest $\alpha$ such that there exists a triangle for which there are at least three angles among $\angle GAB, \angle GAC, \angle GBA, \angle GBC, \angle GCA, \angle GCB$ which are $\geq \alpha$.
artofproblemsolving.com/community/c3719964_2024...
Задача №1. Алфавит состоит из $n$ букв. Слогом назовём любую упорядоченную пару, состоящую из двух не обязательно различных букв. Некоторые слоги считаются неприличными. Словом является любая (конечная или бесконечная) последовательность букв, в которой нет неприличных слогов. Найдите наименьшее возможное количество неприличных слогов, при котором не существует бесконечных слов. ( М. Карпук )
Задача №2. Окружности $\Omega$ и $\Gamma$ пересекаются в точках $A$ и $B$. Линия центров этих окружностей пересекает $\Omega$ и $\Gamma$ в точках $P$ и $Q$ соответственно так, что они лежат по одну сторону от прямой $AB$, причём точка $Q$ расположена ближе к этой прямой. По ту же сторону от $AB$ взята окружность $\delta$, касающаяся отрезка $AB$ в точке $D$ и $\Gamma$ в точке $T$. Прямая $PD$ вторично пересекает $\delta$ и $\Omega$ в точках $K$ и $L$ соответственно. Докажите, что $\angle QTK=\angle DTL$. ( М. Кунгожин, И. Богданов, Сам Ф. )
Задача №3. Натуральное число $d$ не является точным квадратом. Для каждого натурального числа $n$ обозначим через $s(n)$ количество единиц среди первых $n$ цифр двоичной записи числа $\sqrt d$ (цифры до запятой тоже учитываются). Докажите, что существует такое натуральное $A$, что при всех натуральных $n\geqslant A$ выполнено неравенство $s(n)>\sqrt{2n}-2$. ( Navid Safaei )
Задача №4. Учитель выдал детям 10 различных положительных чисел. Серёжа вычислил все 45 их попарных сумм; среди них нашлось пять равных чисел. Петя вычислил все 45 их попарных произведений. Какое наибольшее количество из них могли оказаться равными? ( И. Богданов )
Задача №5. Дана таблица ${m\times n}$, где $mn$ делится на $6$. В этой таблице полоской назовём любой прямоугольник ${1\times 3}$ или ${3\times 1}$, а доминошкой -- любой прямоугольник ${1\times 2}$ или ${2\times 1}$. Таблицу замостили полосками. Докажите, что поверх этого замощения таблицу можно замостить доминошками так, что в каждой полоске две клетки будут накрыты одной доминошкой и ещё одна -- другой. (При замощении прямоугольники покрывают всю таблицу и не перекрываются между собой.) ( М. Карпук )
Задача №6. Медианы треугольника $ABC$ пересекаются в точке $G$. Среди шести углов $GAB$, $GAC$, $GBA$, $GBC$, $GCA$, $GCB$ есть не менее трёх, каждый из которых не меньше $\alpha$. При каком наибольшем $\alpha$ это могло произойти? ( Н. Седракян, И. Богданов )
www.matol.kz/olympiads/1109

tass.ru/obschestvo/19654179
Помогите, пожалуйста, решить задачки на круговое движение:
1. Три бегуна стартую одновременно из трёх точек круговой беговой дорожки, являющихся вершинами правильного треугольника, и бегут в одном направлении. Первый бегун обгоняет второго через 4 мин после старта, а третьего – через 5 мин после старта. Известно, что третий бегун бежит быстрее второго. Через сколько минут после старта третий бегун нагонит второго?
2. Два велосипедиста стартуют одновременно из двух точек круговой велотрассы: первый из точки А, а второй из точки В – и едут в противоположных направлениях с постоянными скоростями. Известно, что из их 15 встреч на трассе после старта только третья и пятнадцатая состоялись в точке В. Найти отношение скорости первого велосипедиста к скорости второго, если известно, что к моменту их пятой встречи каждый из велосипедистов проехал не меньше одного круга.
3. Два спортсмена стартуют одновременно из одной и той же точки кольцевой дорожки стадиона и движутся в противоположных направлениях с постоянными скоростями. Известно, что к моменту их шестой встречи первый спортсмен проехал расстояние на 1200 м большее, чем второй. Если бы второй спортсмен увеличил скорость своего движения в два раза, то к моменту шестой встречи первый спортсмен проехал бы расстояние на 480 м большее, чем второй. Определить длину дорожки стадиона.
4. Два бегуна одновременно стартуют из одной точки кольцевой дорожки на дистанцию 50 кругов и бегут в одном направлении с постоянными скоростями. Через некоторое время выяснилось, что первый бегун обгоняет второго каждые 4 мин. Пробежав полные 45 кругов первый бегун упал и 1 мин 40 с оправлялся от травмы. Однако потом он всё же продолжил бег, правда со скоростью в четыре раза меньшей, чем первоначально, и закончил дистанцию одновременно со вторым бегуном. За сколько минут пробегают круг первый и второй бегуны?
Срок: 10.01.24
Класс: 11
Совсем нет идей, как к ним подступиться, но научиться решать очень хочется...
Всем приложившим ум к задачкам заранее огромное спасибо!
СПБ.: Реноме, 2023. — 264 с.: ил. — ISBN 978-5-00125-552-9.
В книге рассмотрен феномен задач Ферми – задач, где недостаточные исходные данные предполагают приблизительный ответ. Например: Сколько настройщиков пианино в Чикаго? Сколько таксистов в Бостоне? Сколько кошек в Саратове? Сколько весит этаж небоскреба? Сколько в среднем стирается резины при одном обороте колеса? Сколько пылесосов производится в год? – и другие.
В круг интересов автора входят работы Я. И. Перельмана, написавшего огромное количество книг с задачами, расчетами и головоломками, а также 53 задачи для развития молодых умов саксонского учёного, богослова и поэта Алкуина, которые на русском языке приводятся, возможно, впервые.
Издание является частью проекта Botan.us и снабжено обширной библиографией, отображающей публикации XX-XXI веков, посвященные решениям нестандартных задач и различным расчетам. Приводятся ссылки на описания интересных моментов в рассматриваемых книгах. Предпочтения отдаются в соответствии с принципом de visu, что в переводе с ученой латыни означает, что работа ведется с книгами, которые автор видел своими собственными глазами и держал в своих руках.
botan.wiki/File/Kolesnikov2023.pdf
Может ли быть так, что сумма чисел в каждой строке кратна 2, а сумма чисел в каждом столбце кратна 3?
Может ли быть так, что сумма чисел в каждой строке кратна 3, а сумма чисел в каждом столбце кратна 4?
Издание представляет собой развернутый и доработанный конспект лекций видеокурса «100 уроков математики» Алексея Савватеева, который был прочитан в Филипповской школе (Москва) в 2014–2018 гг.
В книге на разном уровне строгости и сложности излагается концепция числа. Начиная с простых геометрических образов, описывающих обычные арифметические действия, и заканчивая сложными алгебраическими понятиями, авторы знакомят читателя с началами теории чисел, теории групп, линейной алгебры и комплeксного анализа.
Основное внимание в книге уделено следующим темам: движения и подобия прямой и плоскости, линейные уравнения в целых числах, арифметика остатков, кольцо многочленов, группа перестановок, комплeксные числа, модели действительных чисел, теория пределов. В книге разбирается ряд известных математических фактов: Основная теорема арифметики, теорема Шаля, теорема Ферма при n = 4, неразрешимость задачи об удвоении куба, формула Эйлера, теорема Кантора.
Особое внимание в книге уделяется теоретико-групповому подходу к описанию математических концепций, подробно разбирается структура группы перестановок и связанные с этим задачи. Кроме того, достаточно подробно изучается аксиома полноты (принцип непрерывности) действительных чисел, а также производится построение вещественной и комплeксной экспоненты.
Книга снабжена большим количеством вспомогательных чертежей и иллюстраций (более 100), а также задачами различной степени сложности для самостоятельного решения (более 800).
Содержание охватывает такие темы, как: геометрия, линейная алгебра, движения, теория групп, комплексные числа, математический анализ, многочлены, кольцо гауссовых чисел.
vk.com/teacher_s_book?w=wall-90389798_58531
