Step by step ... Informazioni sulle gare, come allenarsi, chi corrompere.


Последовательность положительных действительных чисел $a_1, a_2, a_3, \ldots$ удовлетворяет неравенству $\sum_{j = 1}^n a_j \geq \sqrt {n}$ для всех $n \geq 1.$ Докажите, что для всех $n \geq 1$
$\sum_{j = 1}^n a_j^2 > \frac {1}{4} \left( 1 + \frac {1}{2} + \cdots + \frac {1}{n} \right).$





@темы: Доказательство неравенств