Доброй ночи!!! Проверьте пожалуйста правильность решения задачи!!!
В цехе имеется три группы станков в следующих количествах: A-станков I группы, B-станков II группы, С- станков III группы. Требуется изготовить на этих станках изделия двух видов. Известно, что каждое изделие первого вида обрабатывается на a1 станках I группы, на b1 станках II группы и на с1 станках III группы. Каждое изделие второго вида обрабатывается на a2 станках I группы, на b2 станках II группы и на c2 станках III группы. Доход от одного изделия первого вида составляет d1 рублей, от одного изделия второго вида - d2 рублей. Сколько изделий каждого вида должен изготовить цех, чтобы обеспечить наивысшую рентабельность их производства. A=16 B=30 C=16 a1=2 b1=5 c1=4 a2=2 b2=3 c2=0 d1=4 d2=3 Решить задачу двумя способами: a) симплекс методом b) геометрическим методом
Есть такая задача: `TZ` Найти момент инерции относительно оси OZ однородного тела, ограниченного поверхностями: `x+y-1=0`; `x-y-1=0`; `x=0`; `z=0`; `z-2=0` [[/TZ]]
Я вот чего не пойму: тут делать через тройной интеграл, а интегралы от чего брать хоть? Вот такого плана:
`Iz = int int int (x^2+y^2)dx dy dz`
Или просто будет как `int_(x1)^(x2) dx int_(y1)^(y2) dy int_(z1)^(z2) dz` и только пределы расставлены?
На картинке там получается в итоге что-то типа объемного треугольника...
В душе я ещё ребёнок!(И горжусь этим!Взрослым быть слишком скучно!
Условие задачи `TZ` Основание наклонной треугольной призмы ABCA1B1C1 -прямоугольный треугольник ABC, у которого AB=12 ВC=16 угол ABC = 90 градусам.Боковая грань AA1CC1 -квадрат. Вычислите объём призмы если известно, что боковые рёбра пирамиды,B1ABC равны [[/TZ]]
Я смогла найти площадь основания треугольника АВС =96 см
Ещё я нашла АС -по теореме пифагора получили 20...исходя из этого получается рёбра пирамиды тоже 20.
Я высоту провела и решила её через медиану из треугольника АВК искать (К -середина ВС) пользовалась свойствои медиана делит в отношении 2 к одному медиана равна 4корень из 13. а высота тогда 2768/9.....это бред.
Я потом формулу наклонной призмы нашла Площадь сечения на боковое ребро..Только как строить сечение и как задействовать пирамиду в задаче????Подскажите пожалуйста.Времени совсем нет завтра сдавать очень нужно.....Заранее благодарна!
1) cos 3x*cos x-sin x*sin 3x=1 2) 3cos2 x -4cos x+1=0 3) (корень из 3)cos x = sin x 4) sin 5x+cos5x=1 5) sin x/3 *(tg x/4 -1) =0 6) sin 3x-sin 5x=0 7) 3sin2 x+5sinx*cosx-2cos2 x=1
Для `tg(x/3 - pi/4)` можно применить формулу двойного аргумента: `(2*tg(x/6-pi/8))/(1-tg^2(x/6-pi/8))` А для `tg(x/3 + pi/4)` можно? Она будет такая? `(2*tg(x/6+pi/8))/(1+tg^2(x/6+pi/8))` Начал так упрощать с помощью этих преобразований, но получи ерунду какую-то. Помогите, пожалуйста.
Вычислите `2*cos3x*cos4x - cos7x`, если `cos 0.5x = sqrt(0,8)`
Задание элементарное, но вот что-то не пойму: Выражение я упростил, получил `cosx`. А дано, что `cos 0.5x = sqrt(0,8)`. Как из `cos 0.5x = sqrt(0,8)` получить `cosx`?
задания в тексте 5) а) вычислить экстремум u=-3x^2-7y^2-6z^2-2yz+y+3z+5
б) Проверить ортогональность плоскостей к поверхности: σ 1: xyz-ln(x)+(x+y)^2=5 в точке M(1;1;1) σ 2: (y+4)*z-x^3=4
6) Вычислить площадь фигуры, ограниченной прямой, заданной в полярной системе координат: ρ=6*cos(3&Pi
7) вычислить предел сходимости:
Σ(от n=1 до бесконечности) (((n^2*(x-3)^n))/((n^4+1)^2))
в пятом а) надо найти экстремум. я нашел точку, это у меня получилось (0;-9/82; 19/82). если это верно. но какой это экстремум? пытался найти вторую производную, но она у меня не выходит.((
пятый б): я его вообще не понимаю.(( кажется там надо найти нормали, но они у меня получаются дикими...(((
в шестом у меня получается фигура, и угол равен П/6. но как вычислить площадь?
Помогите построить рисунки 1. Плоскости ABC и ABD образуют угол 60, DA перпендикулярна AB, CB перпендикулярна AB, AD=4, AB=3, CB=2. Найти: а) CD; б) угол между прямой CD и плоскостью ABC. 2. Точка М лежит внутри двугранного угла величиной 120° и удалена от его граней на расстояния соответственно 4 и 6. Найдите расстояние от М до ребра двугранного угла.
Найти координаты всех вершин и составить уравнения всех сторон квадрата АВСД, если известны координаты вершины А(6; 3) и уравнение диагонали ВД: 3х+4y-5=0
Осенняя луна.\n О, если б вновь родиться\n Сосною на горе!
Товарищи, объясните пожалуйста, как строить доверительный интервал, что есть квантили, уровни и как их находить. Будет хорошо, если будут примеры с объяснением. И если можно расскажите пожалуйста про гамма распределение, хи-квадрат и распределение стьюдента и где они используются и встречаются=)
Прошу помочь со следующими заданиями: 1) Решить уравнение при каждом `a` `\log_{a}(x^2-3*a)=\log_{a}(a*x^2-3*x)` Я решала как обычное уравнение через такую систему: `{(a#1), (a>0), (x^2-3*a>0), (x^2-3*a-a*x^2+3*x=0):}` Все получилось слишком запутано - ответ проще. 2) Решить уравнение: `2*(2-x^2-x)=sqrt(1-x^2)*(3*x^2-6*x+4)` Тут я , т.к. правая часть всегда положительна, взяла уравнение в квадрат, но тоже ничего путевого из этого не вышло. иначе не знаю как.