Помогите пожалуйста! Нужно очень срочно!
Исследовать устойчивость нулевого решения систем д.у. и начертить фазовые кривые в плоскости Oxy.
x' = -3x + 2y
y' = -2x + y

Я решил просто на устойчивость но как начертить фазовые кривые Я БЕЗ ПОНЯТИЯ! И в книжках ничего толком не понял... там есть похожии задачи(в Посмотрите Самойленко, Кривошея, Перестюк)... но ничё похожего не нашёл... НАРОД! Пожалуйста!
Всем заранее спасибо!=)
Моё решение и условие вот=)

@темы: Дифференциальные уравнения

09:41

Даны две плоскости. Надо составить уравнение биссекторной плоскости острого угла. Как мы определяем, какой из углов является острым? Как узнать, с каким знаком раскрыть модуль, когда будем приравнивать левые части нормальных уравнений?

апд.
Выразить эксцентриситет гиперболы через эксцентриситет эллипса, имеющего с этой гиперболой общие фокальные хорды, перпендикулярные действительной оси.

@темы: Аналитическая геометрия

06:22

пожалуйста!! помогите решить уравнение, скажите какая замена должна быть или какой метод >_<
(y')^4=4y(xy'-2y)^2

вот как я пытался решить

@темы: Дифференциальные уравнения

05:28

счастье рядом
Доброй ночи.
Объясните, пожалуйста, как строить графики комплексных функций.
Например, | 3 - 2z | = 1

По идее радиус один, а центр как-то выражается с помощью i, но я не пойму, как... что-то с формулой |z-z0| = R
Заранее спасибо.


@темы: Комплексные числа

`lim_(n->infty) e^(n*t)*cos(n*t)`; t>0
1. Этот предел не существует или это `oo` * [ограниченн.] = `oo` ?
2. `oo` * [ограниченн.] = `oo` здесь не понятно, т. к. cos(), несмотря на то что ограничен, может быть равным нулю..

Если прикинуть по критерию сх-ти Коши, то получается, что не существует... Выходит, что предел равен бесконечности или он не существует по сути одно и тоже?

@темы: Математический анализ

02:14

читать дальше
не могу понять как преобразовали выражение , что в результате в квадратных скобках появился минус да и вообще как они привели к виду суммы

@темы: Математический анализ

01:20

Nobody can say "What?!" like David Tennant (с)
Помогите, пожалуйста, доказать (или хотя бы понять, от чего отталкиваться), что следующее множество является вещественным линейным пространством с операциями сложения его элементов и умножением их на вещественные числа.
Множество многочленов Pn(x) с вечественными коэффициентами степени ≤ n.

@темы: Линейная алгебра

01:10

«- Милая девочка, если бы ты знала, как невероятно легко не быть сексуальным объектом.»
помогите пожалуйста, хотя бы дайте указание в каком направлении следовать.. очень хочу понять решение:
построить кривую по заданному уравнению:
y^2 + 4х + 4у + 12 = 0

@темы: Аналитическая геометрия

Помогите решить производные, никак не могу понять, как их сделать((
y=1/(sin^3(10x))
y= 1/9arccos(9/x)
x^2(sin2y)-y^2(cos2x)=10
y=ln ctg(n/4-x^2/2)
3^(x+y^2)-x*y^3(ln3)=15
y=(sin√x)^(m(sin√x))

В системе: x=ln*cos^2(2t)
y=sin^2(2t)

В системе: x=a(2t+sint)
y= a(1-2cost)

@темы: Производная

All becomes crystal clear
Здравствуйте!
Имеется диффур

xdy/sqrt(1-y^2) + ydx/sqrt(1-x^2) = 0

Делаю преобразования, получаю

dy/ysqrt(1-y^2) = - dx/x(1-x^2)

Берем интеграл... Я заменяла 1-y^2 = t2 и 1-x^2=k^2
вышло, что y=sqrt(1-t^2) и x=sqrt(1-k^2)
Но дальше все идет как-то наперекосяк и у меня не получается ничего.

Друг попросил решить репетитора, вот такой ответ она ему выдала -th1/sqrt(1-y^2) = th 1/sqrt(1-x^2) + C
Помогите разъяснить ситуацию и решить пример

@темы: Дифференциальные уравнения

22:35

Извиняются, когда наступают в трамвае на ногу.Когда плюют в душу - просят прощения.©
Условие|
Решить с помощью правила Лопиталя
`lim_{x->0} (e^2x+x)^(1/x)`


@темы: Пределы

Условие|
Найти площадь треугольника ABC с углом A=120 градусов, если его вершины B, C и середины сторон AB, AC лежат на одной окружности радиуса `7`.

читать дальше

@темы: Планиметрия

22:23

Тот факт, что ты способен всех понять, еще не значит, что поймут тебя ©
помогите разобраться, пожалуйста
нужно найти все попарно неизоморфные графы пятого порядка.
не нашла нигде объяснения, что значит попарно неизоморфные. да и вообщем-то не очень понятен алгоритм действия для поиска неизоморфных графов.
или их просто надо пытаться все нарисовать?


@темы: Теория графов, Дискретная математика

21:55

Можно просто Аня
Здравствуйте!
Пожалуйста, помогите решить 2 задачи. До завтрашнего дня надо.
Мат. анализ, 1 курс.
из задачника по курсу мат. анализа, автор - Г. Н. Берман.

№1221 Найти высоту цилиндра наибольшего объема, который можно вписать в шар радиуса R.

№1248 На отрезке длинной l, соединяющем два источника света силы I1 и I2, найти наименее освещенную точку.

Очень нужно!

@темы: Математический анализ

21:05

Как найти обратный элемент в поле? Например, просто найти все обратные элементы к элементам поля Z7, отличным от нуля.

@темы: Высшая алгебра, Теория чисел

Пожалуйста! помогите найти ошибку, если таковая имеется! У меня есть интеграл:
integral sqrt(x)/(sqrt(x)+1). Его нужно решить методом замены. 1.Если я заменяю sqrt(x) = t,
то получаю следующее: x=t^2, dx = 2t*dt
integral sqrt(x)/(sqrt(x)+1) = 2 integral (t^2)dt/(t+1) = 2integral(((t-1)(t+1))/(t+1) + dt/(t+1)) = t^2 -2t+2ln|t+1| = x - 2sqrt(x)+2ln|sqrt(x)+1| +с
2. Если же заменить не sqrt(x), а sqrt(x) +1 , то в ответе откуда-то берётся -3!!
sqrt(x)+1 = t
sqrt(x)=t-1
x=(t-1)^2
dx = 2(t-1)dt
Вот:
integral sqrt(x)dx/(sqrt(x)+1) = 2integral (((t-1)^2)dt)/t = 2int(t-2+1/t) = (sqrt(x)+1)^2 -4(sqrt(x)+1) + 2ln|sqrt(x)+1| +c=
=x+2*sqrtx+1 -4sqrtx - 4+ 2ln|sqrt(x)+1| +с=x-2*sqrtx -3+ 2ln|sqrt(x)| +c
Почему ответы разные?? И в том, и в другом - вроде всё правильно! Что за чудеса? ОО

@темы: Интегралы

Вопрос в следующем.
Имеется такое задание: Найти преобразование Фурье функции f(x) и ее амплитудный спектр.
1. Преобразование Фурье это то же самое, что и представить ф-цию интегралом Фурье? или нет?
2. Что такое амплитудный спектр и как его найти?

Помогите, пожалуйста, разобраться

@темы: Интегралы

Добрый вечер.
Никак не получается решить(установить сходимость) два ряда:

1. Sum[(n*e^(1/n)-n-1)^(1/2), {n,1, Infinity}]
GIF


2. Sum[(pi/2 - arctg(n))^2, {n,1, Infinity}]
GIF


Помогите пожалуйста. Заранее спасибо

@темы: Ряды

20:32

Условие|
Исследовать на условный экстремум функцию `f(x,y,z)` при данном уравнении связи:
`f(x,y,z) = sinxsinysinz`, `x+y+z=pi/2,x>0,y>0,z>0`

Решаю методом множителей Лагранжа:
`L[x,y,z] = sinxsinysinz+lambda(x+y+z-pi/2)`
`{((deltaL)/(deltax) = cosxsinysinz+lambda = 0), ((deltaL)/(deltay) = sinxcosysinz+lambda = 0), ((deltaL)/(deltaz) = sinxsinycosz+lambda = 0), ((deltaL)/(deltalambda) = x+y+z-pi/2 = 0):}`

Решил данную сис-му. Получилось: `x=y=z=pi/6,lambda=-sqrt(3)/8`. `M(pi/6,pi/6,pi/6)`

Вот так выглядит второй дифференциал:
`d^2L = -sinxsinysinzdx^2 - sinxsinysinzdy^2 - sinxsinysinzdz^2` `+ 2cosxcosysinzdxdy + 2cosxsinycoszdxdz + 2sinxcosycoszdydz`

Если я правильно понимаю, то надо найти соотношение для дифференциалов? Или как теперь проверить точку на экстремум?

@темы: Функции нескольких переменных

Добрый день! Помогите пожалуйста выбрать литературу для подготовки к экзамену по аналитической геометрии. На данный момент занимаюсь по Ильину. Есть ли "классическая" книга, написанная ясным языком на примере задач и с доказательствами теорем?

@темы: Линейная алгебра, Аналитическая геометрия