Step by step ... Informazioni sulle gare, come allenarsi, chi corrompere.


Пусть $a$ и $b$ --- нечетные положительные целые числа. Определим последовательность $(f_n)$, полагая, что $f_1 = a$, $f_2 = b$, а $f_n$ для $n\ge3$ --- наибольший нечетный делитель $f_{n-1} + f_{n-2}$. Покажите, что значение $f_n$ равно некоторой константе при достаточно больших $n$ и найдите эту константу как функцию от $a$ и $b$.




@темы: Теория чисел