воскресенье, 30 июня 2019
Дана последовательность ненулевых действительных чисел $a_1, a_2, a_3, ...$ такая, что $a^2_n = -a_{n+1}a_{n-1}$ для всех натуральных чисел $n,$ $n \geq 2.$ Докажите, что числа $a_2, a_4, a_6, \ldots$ образуют геометрическую прогрессию.
| 
|
@темы:
Прогрессии