вторник, 15 сентября 2020
Имеется доска $13 \times 13$ клеток, каждая клетка которой окрашена в чёрный или нечёрный цвет. За один ход можно выбрать квадрат размером $2 \times 2$ или $9 \times 9$ клеток и сделать в нём все чёрные клетки нечёрными и все нечёрные клетки чёрными.
Всегда ли возможно с помощью некоторой последовательности таких операций сделать так, чтобы все клетки доски стали чёрными?
| 
|
@темы:
Дискретная математика