1) Пусть `a_n` - ограниченная последовательность натуральных чисел ,`lim_(n -> infty) (a_1 * ... * a_n)^(1/n) = 1` . Найти `lim_(n -> infty) (a_1+...+a_n)/n`
Для начала докажем, что `lim_(n -> infty) (a_1 * ... * a_n)^(1/n) = lim_(n -> infty) a_n`. Для этого рассмотрим предел `lim_(n -> infty) ln(a_1 * ... * a_n)^(1/n) = lim_(n -> infty) (ln(a_1)+...+ln(a_n))/n`, по теореме Штольца он равен `lim_(n -> infty) ln(a_n)`. Применив теорему Штольца к пределу `lim_(n -> infty) (a_1+...+a_n)/n` получим, что он равен `lim_(n -> infty) a_n`, следовательно искомый предел равен 1.
2) Если `lim_(x -> infty) f(x) + f'(x) = a` , то `lim_(x -> infty) f(x) = a`, а `lim_(x -> infty) f'(x) = 0`. Доказать
Применив правило Лопиталя к пределу `lim_(x -> infty) (e^x * f(x)) / e^x` получим : `lim_(x -> infty) (e^x * f(x)) / e^x = lim_(x -> infty) (e^x * (f(x)+ f'(x))) / e^x = a`
Следовательно `lim_(x -> infty) f'(x) = 0` и `lim_(x -> infty) f(x) = a`
Для начала докажем, что `lim_(n -> infty) (a_1 * ... * a_n)^(1/n) = lim_(n -> infty) a_n`. Для этого рассмотрим предел `lim_(n -> infty) ln(a_1 * ... * a_n)^(1/n) = lim_(n -> infty) (ln(a_1)+...+ln(a_n))/n`, по теореме Штольца он равен `lim_(n -> infty) ln(a_n)`. Применив теорему Штольца к пределу `lim_(n -> infty) (a_1+...+a_n)/n` получим, что он равен `lim_(n -> infty) a_n`, следовательно искомый предел равен 1.
2) Если `lim_(x -> infty) f(x) + f'(x) = a` , то `lim_(x -> infty) f(x) = a`, а `lim_(x -> infty) f'(x) = 0`. Доказать
Применив правило Лопиталя к пределу `lim_(x -> infty) (e^x * f(x)) / e^x` получим : `lim_(x -> infty) (e^x * f(x)) / e^x = lim_(x -> infty) (e^x * (f(x)+ f'(x))) / e^x = a`
Следовательно `lim_(x -> infty) f'(x) = 0` и `lim_(x -> infty) f(x) = a`
А откуда следует, что `a_n` имеет предел?...
Красиво придумано... осталось доказать, что есть неопределённость...
Ну, это условие в доказательстве неявно мешает применять какие-то более быстрые действия... но проверять его надо, иначе правило Лопиталя не работает, чему есть масса примеров...
Ну, если Вы хотите оставить правило Лопиталя, то надо доказывать, что произведение `f(x)*e^x` имеет бесконечный предел...