В теме "Ортогональные системы функций" (Фихтенгольц Т3, Гл. 19, параграф 1, п. 679, пример 5) указаны многочлены Лежандра в качестве ортогональной системы функций.
Приведен интеграл
`int_{-1}^{1} P^2(x) dx = 2/(2n + 1)`
`P_0(x) = 1`
`P_n(x) = 1/((2n)!!) * (d^n(x^2 - 1)^n)/(dx^n)`
Решил я разобраться с этим интегралом. Фихтенгольц меня отправляет -> Т2, гл. 9, параграф 4, п. 320, стр. 150.
Исключаем временно константу `1/(((2n)!!)^2)`
Рассмотрим интеграл
`int_{-1}^{1} (d^n(x^2 - 1)^n)/(dx^n) * (d^n(x^2 - 1)^n)/(dx^n) dx`
Интегрируем по частям
Берем первую дробь за `u` другую за `dv`. Части `uv` при подстановке пределов интегрирования будут обнуляться. При `int_{-1}^{1} vdu` будет вылезать минус.
Проделав эту операцию `n` раз, мы получаем интеграл
`(-1)^n * int_{-1}^{1} (d^(2n)(x^2 - 1)^n)/(dx^(2n)) * (x^2 - 1)^n dx = 2 * (2n)! * int_{0}^{1} (1 - x^2)^n dx`
Здесь мне понятно все, кроме одного. Как доказать такое равенство
`(d^(2n)(x^2 - 1)^n)/(dx^(2n)) = (2n)!`
Дальнейшие выкладки мне понятны. Даже дословно разобрал `int_{0}^{1} (1 - x^2)^n dx` при `x = sint`. Тут все ясно. Вот помогите только доказать это равенство. На него ссылок вроде Фихтенгольц не оставил(( Проще конечно на веру принять. Но если разбираться, то уж до конца. А то так просто не интересно))

@темы: Математический анализ

Комментарии
13.09.2016 в 21:41

Мы дифференцируем `2n` раз многочлен, у которого член с самым старшим коэффициентом равен `x^{2n}`. Все остальные члены имеют меньшую степень и после многократного дифференцирования обратятся в нуль. А старший член при последовательном дифференцировании будет снижать степень на 1 и получать множители `2n`, `2n-1`, `2n-2` и т. д.
13.09.2016 в 22:11

Alidoro, Да. Иногда даже удивляюсь, насколько все просто. Ведь можно было тупо раскрыть эту скобку в степени n и посмотреть. Ладно, спасибо))