привет! помогите плиз решить задачу, надо до четверга. Десятичная запись натурального числа n содержит 61 цифру. Среди этих цифр есть тройки, четверки и пятерки. Других цифр нет. Число троек больше чем пятерок. Найти остаток от деления на 9.
а я нашёл оригинал - или, по меньшей мере - более полное описание задачи!
"Помогите, пожалуйста, разобраться с задачами: 1. Десятичная запись натурального числа n содержит 61 цифру. Среди этих цифр есть тройки, четверки и пятерки. Других цифр нет. Число троек на 11 больше числа пятерок. Найти остаток от деления n на девять. 2. Найти остаток от деления $1992^{34}$ на 17. 3. Найти все целочисленные решения уравнения $2x^2y^2 +y^2 - 6x^2 - 12=0$ Заранее благодарна..."
Представьте себе - пост на форуме дхду.ру 2008 года!
и в таком раскладе задача решается - ответ - 8
(ответ на задачу 2 выше - 9) (ответ на задачу 3 выше - (-2,-2), (-2,2), (2,2), (2,-2))
Эллипс - это круг, который можно вписать в квадрат 25х40
Гость, Представьте себе - пост на форуме дхду.ру 2008 года! ...В этом нет ничего удивительного... Студенты из года в год идут с одними и теме же вопросами...
"Помогите, пожалуйста, разобраться с задачами:
1. Десятичная запись натурального числа n содержит 61 цифру. Среди этих цифр есть тройки, четверки и пятерки. Других цифр нет. Число троек на 11 больше числа пятерок. Найти остаток от деления n на девять.
2. Найти остаток от деления $1992^{34}$ на 17.
3. Найти все целочисленные решения уравнения $2x^2y^2 +y^2 - 6x^2 - 12=0$
Заранее благодарна..."
Представьте себе - пост на форуме дхду.ру 2008 года!
и в таком раскладе задача решается - ответ - 8
(ответ на задачу 2 выше - 9)
(ответ на задачу 3 выше - (-2,-2), (-2,2), (2,2), (2,-2))
...