I think its gonna rain
Здравствуйте! Всех с наступающими праздниками 
Поясните, пожалуйста, за подгруппы и смежные классы из теории чисел.
Не совсем понимаю как образовывать смежные классы, чтобы элементы в них не пересекались.
Допустим, у меня есть модуль = 17.
ф(17) = 16
Количество различных порядков элементов группы 2, 4, 8, 16
Формирую подгруппы с помощью элементов 8 (ord = 2), 4 (ord = 4), 2 (ord = 8), 3 (ord = 16)
С 8 все замечательно. Подгруппа {1, 8}; смежные классы {2, 9}, {3, 10}, {4, 11}, {5, 12}, {6, 13}, {7, 14}, {8, 15}
С 4 и 2 уже начинаются проблемы.
Подгруппа образованная с помощью элемента 4: {1, 4, 16, 13} Смежных классов должно получиться 3, к каждому элементу каждый раз прибавляется 1, как я понимаю, но тогда элементы пересекаются.
В связи с чем вопрос - а отнимать можно? Тогда получается что-то вроде: смежные классы {2, 5, 15, 12}, {3, 6, 14, 11}, {4, 7, 13, 10}. Это верно?
Подгруппа, сформированная с помощью элемента 2, получилась следующей: {1, 2, 4, 8, 9, 13, 15, 16}. Смежные классы с непересекающимися элементами получилось построить только так: {0, 3, 5, 9, 8, 12, 14, 15}, {16, 4, 6, 10, 7, 11, 13, 1}. Причем последний элемент сначала уменьшается на единицу, а для формирования второго класса пришлось увеличить его на 2.

Поясните, пожалуйста, за подгруппы и смежные классы из теории чисел.
Не совсем понимаю как образовывать смежные классы, чтобы элементы в них не пересекались.
Допустим, у меня есть модуль = 17.
ф(17) = 16
Количество различных порядков элементов группы 2, 4, 8, 16
Формирую подгруппы с помощью элементов 8 (ord = 2), 4 (ord = 4), 2 (ord = 8), 3 (ord = 16)
С 8 все замечательно. Подгруппа {1, 8}; смежные классы {2, 9}, {3, 10}, {4, 11}, {5, 12}, {6, 13}, {7, 14}, {8, 15}
С 4 и 2 уже начинаются проблемы.
Подгруппа образованная с помощью элемента 4: {1, 4, 16, 13} Смежных классов должно получиться 3, к каждому элементу каждый раз прибавляется 1, как я понимаю, но тогда элементы пересекаются.
В связи с чем вопрос - а отнимать можно? Тогда получается что-то вроде: смежные классы {2, 5, 15, 12}, {3, 6, 14, 11}, {4, 7, 13, 10}. Это верно?
Подгруппа, сформированная с помощью элемента 2, получилась следующей: {1, 2, 4, 8, 9, 13, 15, 16}. Смежные классы с непересекающимися элементами получилось построить только так: {0, 3, 5, 9, 8, 12, 14, 15}, {16, 4, 6, 10, 7, 11, 13, 1}. Причем последний элемент сначала уменьшается на единицу, а для формирования второго класса пришлось увеличить его на 2.
непонятно.. 8*8 = 64 = 13 mod 17 ...
Посчитал... получилось три подгруппы... `{1;16}`... `{1;4;16;13}`... `{1;2;4;8;16;15;13;9}` ...
Подгруппы такие же за исключением первой, в других элементы выстроены по возрастанию