И опять нужно представить согласно формуле Маклорена функцию (x^2+1)/(x^2-1)
Я разложила функцию в ряд подставив значения производных в точке 0 в формулу, у меня получается первая производная равна нулю в точку ноль, вторая -4, третья опять нулю, а четвертая -48 (дальше не находила) подставив в формулу получается:
`-1-(4x^2)/2-48x^4/24+O(x^5)`
`-1-2x^2-2x^4+O(x^5)`
Правильно ли я делаю и подходит ли такое решение, подскажите...
Я разложила функцию в ряд подставив значения производных в точке 0 в формулу, у меня получается первая производная равна нулю в точку ноль, вторая -4, третья опять нулю, а четвертая -48 (дальше не находила) подставив в формулу получается:
`-1-(4x^2)/2-48x^4/24+O(x^5)`
`-1-2x^2-2x^4+O(x^5)`
Правильно ли я делаю и подходит ли такое решение, подскажите...