Step by step ... Informazioni sulle gare, come allenarsi, chi corrompere.
Две пересекающиеся окружности `C_1` и `C_2` имеют общую касательную, которая касается `C_1` в точке `P` и `C_2` в точке `Q`. Окружности пересекаются в точках `M` и `N`, точка `N` ближе к `PQ`, чем точка `M`. Прямая `PN` пересекает повторно окружность `C_2` в точке `R`. Докажите, что `MQ` делит пополам угол `PMR`. читать дальше | ![]() |
"угол между касательной и хордой = половине дуги, которую эта хорда стягивает ( и равен любому вписанному углу, опирающемуся на эту дугу )"
но что-то задача
"не олимпиадная"не сложная =) ( в отличие от 2 предыдущих...=( )это я с предыдущей планиметрией сравнила )))