Московское высшее техническое училище (МВТУ) имени Н.Э. Баумана стало первым в стране государственным техническим университетом (МГТУ имени Н.Э. Баумана).
Одна из важнейших особенностей технических университетов — фундаментальная подготовка будущих инженеров на основе углубленного и расширенного цикла математических, естественно-научных и общеинженерных дисциплин. Для этого необходимо современное учебно-методическое обеспечение, широко использующее передовые информационные технологии. С целью создания такого обеспечения научно-педагогические школы университета и Издательство МГТУ имени Н.Э. Баумана готовят серии учебников по математике, механике, физике, информатике, электронике и другим дисциплинам.
Серия „Математика в техническом университете" содержит 21 выпуск.
В написании серии учебников по математике принимал участие большой коллектив преподавателей кафедр Прикладной математики и Математического моделирования МГТУ имени Н.Э. Баумана. В его состав входили как профессиональные математики — выпускники математических кафедр университетов, так и выпускники вуза, широко использующие математику в своей научной и преподавательской работе. Такое сочетание авторов и редакторов серии создало предпосылки объединения строгого и доказательного изложения материала с прикладной направленностью многочисленных примеров и задач, рассматриваемых в учебниках, что обеспечивает тесные межпредметные связи курса высшей математики с естественно-научными и общеинженерными дисциплинами.
Структура учебников предусматривает возможность нескольких уровней изучения этого курса в зависимости от конкретной инженерной специальности студента и требований к глубине его математической подготовки.

КНИГИ СЕРИИ "МАТЕМАТИКА В ТЕХНИЧЕСКОМ УНИВЕРСИТЕТЕ"

I. Введение в анализ
Морозова В.Д. Введение в анализ: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - М.: Изд-во МГТУ им. Н.Э. Баумана, 1996. -408 с. (Сер. Математика в техническом университете; Вып. I).
Книга является первым выпуском учебного комплекса „Математика в техническом университете", состоящего из двадцати одного выпусков. Знакомит читателя с понятиями функции, предела, непрерывности, которые являются основополагающими в математическом анализе и необходимыми на начальном этапе подготовки студента технического университета. Отражена тесная связь классического математического анализа с разделами современной математики (прежде всего, с теорией множеств непрерывных отображений в метрических пространствах).
Для студентов технических университетов. Может быть полезен преподавателям и аспирантам.
Скачать ( 5,35 Мб)

II. Дифференциальное исчисление функций одного переменного
Иванова Е.Е. Дифференциальное исчисление функций одного переменного: Учеб. для вузов / Под ред. В.С.Зарубина, А.П.Крищенко. - М.: Изд-во МГТУ им. Н.Э. Баумана, 1998.- 408 с. (Сер. Математика в техническом университете; Вып. II).
Книга является вторым выпуском комплекса учебников „Математика в техническом университете". Знакомит читателя с понятиями производной и дифференциала, с их использованием при исследовании функций одного переменного. Большое внимание уделено геометрическим приложениям дифференциального исчисления и его применению к решению нелинейных уравнений, интерполированию и численному дифференцированию функций. Приведены примеры и задачи физического, механического и технического содержания.
Содержание учебника соответствует курсу лекций, который автор читает в МГТУ им. Н.Э. Баумана. Для студентов технических вузов. Может быть полезна преподавателям и аспирантам.
Скачать ( 4,7 Мб)

III. Аналитическая геометрия
Канатников А.Н., Крищенко А.П. Аналитическая геометрия. -2-е изд. - М., Изд-во МГТУ им. Баумана, 2000, 388 с (Сер.Математика в техническом университете; Вып. III.)
Книга знакомит с основными понятиями векторной алгебры и ее приложений, теории матриц и определителей, систем линейных уравнений, кривых и поверхностей второго порядка.
Материал изложен в объеме, необходимом на начальном этапе подготовки студента технического университета.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э.Баумана.
Скачать (2.02 Мб)
Издание 3, 2002 год

IV. Линейная алгебра
Канатников А.Н., Крищенко А.П. Линейная алгебра: Учеб. для вузов. 3-е изд., стереотип. / Под ред. B.C. Зарубина, А.П. Крищенко. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. - 336 с. (Сер. Математика в техническом университете; Вып. IV).
Описание: Книга является четвертым выпуском серии „Математика в техническом университете" и содержит изложение базового курса по линейной алгебре. Дополнительно включены основные понятия тензорной алгебры и итерационные методы численного решения систем линейных алгебраических уравнений. Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Скачать (2.7 Мб)

V. Дифференциальное исчисление функций многих переменных
А.Н. Канатников, А.П. Крищенко, В.Н. Четвериков. Дифференциальное исчисление функций многих переменных: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2000. - 456 с. (Сер. Математика в техническом университете; Вып. V).
В пятом выпуске подробно рассмотрены основополагающие понятия предела и непрерывности функций многих переменных, свойства дифференцируемых функций, вопросы поиска абсолютного и условного экстремумов функций многих переменных. Отражена связь дифференциального исчисления функций многих переменных с дифференциальной геометрией. Рассмотрены методы решения систем нелинейных уравнений.
Теоретический материал изложен с применением методов линейной и матричной алгебры и иллюстрирован раэбором примеров и задач. В конце каждой главы приведены вопросы и задачи для самостоятельного решения.
Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
Скачать (7,43 Мб, качество не очень хорошее)

VI. Интегральное исчисление функций одного переменного
Зарубин B.C., Иванова Е.Е., Кувыркин Г.Н. Интегральное исчисление функций одного переменного: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - М.: Изд-во
МГТУ им. Н.Э. Баумана, 1999. - 528 с. (Сер. Математика в техническом университете; Вып. VI).

Книга является шестым выпуском комплекса учебников "Математика в техническом университете". Знакомит читателя с понятиями неопределенного и определенного интегралов и методами их вычисления. Уделено внимание приложениям определенного интеграла, приведены примеры и задачи физического, механического и технического содержания.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Для студентов технических вузов. Может быть полезен преподавателям и аспирантам.
Скачать ( 6.01 Мб)


VII. Кратные и криволинейные интегралы. Элементы теории поля
Гаврилов В.Р., Иванова Б.Б., Морозова В.Д. Кратные и криволинейные интегралы. Элементы теории поля: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - 2-е изд., стереотип. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2003. -496 с. (Сер. Математика в техническом университете; Вып. VII).
Книга является седьмым выпуском комплекса учебников „Математика в техническом университете". Она знакомит читателя с кратными, криволинейными и поверхностными интегралами и с методами их вычисления. В ней уделено внимание приложениям этих типов интегралов, приведены примеры физического, механического и технического содержания. В заключительных главах изложены элементы теории поля и векторного анализа.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
(За ссылки на эту книгу большое спасибо Imper)
Скачать (7,4 мб)


VIII. Дифференциальные уравнения
С.А. Агафонов, А.Д. Герман, Т.В. Муратова Дифференциальные уравнения. - МГТУ им. Н.Э. Баумана, 2004. -348 с. - (Математика в техническом университете)
Изложены основы теории обыкновенных дифференциальных уравнений (ОДУ) и даны основные понятия об уравнениях с частными производными первого порядка. Приведены многочисленные примеры из механики и физики. Отдельная глава посвящена линейным ОДУ второго порядка, к которым приводят многие прикладные задачи. Содержание учебника соответствует курсу лекций, которые авторы читают в МГТУ Им. Н. Э. Баумана. Для студентов технических университетов и вузов. Может быть полезен интересующимся прикладными задачами теории дифференциальных уравнений.
Скачать

IX. Ряды
Власова Е.А. Ряды: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - 3-е изд., исправл. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. - 616 с. (Сер. Математика в техническом университете; Вып. IX). ISBN 5-7038-2884-8
Книга знакомит читателя с основными понятиями теории числовых и функциональных рядов. В книге представлены степенные ряды, ряды Тейлора, тригонометрические ряды Фурье и их приложения, а также интегралы Фурье. Изложена теория рядов в банаховых и гильбертовых пространствах, и в объеме, необходимом для ее изучения, рассмотрены вопросы функционального анализа, теории меры и интеграла Лебега. Теоретический материал сопровождается подробно разобранными примерами, рисунками и большим количеством задач разного уровня сложности.
Для студентов технических университетов. Учебник может быть полезен преподавателям и аспирантам.
Скачать (djvu в архиве, 5.98 Мб, 600dpi+OCR)

X. Теория функций комплексного переменного
Морозова В.Д. Теория функций комплексного переменного: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - 3-е изд., исправл. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2009. - 520 с. (Сер. Математика в техническом университете; Вып. X.) ISBN 978-5-7038-3189-2
Книга посвящена теории функций одного комплексного переменного. В ней уделено внимание вопросам, связанным с конформными отображениями, а также применению теории к решению прикладных задач. Приведены примеры и задачи из физики, механики и разных отраслей техники.
Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
Скачать (djvu в архиве, 4.85 Мб, 600dpi+OCR)

XI. Интегральные преобразования и операционное исчисление
Волков И.К., Канатников А.Н. Интегральные преобразования и операционное исчисление: Учеб. для вузов. 2-е изд. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. -228 с. (Сер. Математика н техническом университете; Вып. XI).
Изложены элементы теории интегральных преобразований. Рассмотрены основные классы интегральных преобразований, играющие важную роль в решении задач математической физики, электротехники, радиотехники. Теоретический материал проиллюстрирован большим числом примеров. Отдельный раздел посвящен операционному исчислению, имеющему важное прикладное значение.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Для студентов технических университетов и вузов, аспирантов и научных сотрудников, использующих аналитические методы в исследовании математических моделей.
Скачать(6,75 Мб)
NEW -- Немного причесанный Гостем том XI (3,28 Мб)

XII. Дифференциальные уравнения математической физики
Мартинсон Л.К., Малов Ю.И. Дифференциальные уравнения математической физики: Учеб. для вузов. 2-е изд. / Под ред. B.C. Зарубина, А.П. Крищенко. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. - 368 с. (Сер. Математика в техническом университете; Вып. XII).
Рассмотрены различные постановки задач математической физики для дифференциальных уравнений в частных производных и основные аналитические методы их решения, проанализированы свойства полученных решений. Изложено большое число линейных и нелинейных задач, к решению которых приводит исследование математических моделей различных процессов в физике, химии, биологии, экологии и др.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
Скачать (2,5 Мб)

XIII. Приближенные методы математической физики
Власова Е.А., Зарубин B.C., Кувыркин Г.Н. Приближенные методы математической физики: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. -700 с. (Сер. Математика в техническом университете; Вып. XIII).
Книга является тринадцатым выпуском серии учебников „Математика в техническом университете". Последовательно изложены математические модели физических процессов, элементы прикладного функционального анализа и приближенные аналитические методы решения задач математической физики, а также широко применяемые в научных исследованиях и инженерной практике численные методы конечных разностей, конечных и граничных элементов. Рассмотрены примеры использования этих методов в прикладных задачах. Содержание учебника соответствует курсам лекций, которые авторы читают в МГТУ им. Н.Э. Баумана. Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
Скачать(4,9 Мб)

XIV. Методы оптимизации
А.В. Аттетков, СВ. Галкин, B.C. Зарубин. Методы оптимизации: Учеб. для вузов / Под ред. B.C. Зарубина,А.П. Крищенко. - 2-е изд., стереотип. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2003. -440 с. (Сер. Математика в техническом университете; Вып. XIV).
Книга посвящена одному из важнейших направлений подготовки выпускника технического университета — математической теории оптимизации. Рассмотрены теоретические, вычислительные и прикладные аспекты методов конечномерной оптимизации. Много внимания уделено описанию алгоритмов численного решения задач безусловной минимизации функций одного и нескольких переменных, изложены методы условной оптимизации. Приведены примеры решения конкретных задач, дана наглядная интерпретация полученных результатов, что будет способствовать выработке у студентов практических навыков применения методов оптимизации.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана. Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
Скачать(2,1 Мб)

XV. Вариационное исчисление и оптимальное управление
Ванько В.И., Ермошина О.В., Кувыркин Г.Н. Вариационное исчисление и оптимальное управление: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - 3-е изд., исправл. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. -488 с. (Сер. Математика в техническом университете; Вып. XV).
Наряду с изложением основ классического вариационного исчисления и элементов теории оптимального управления рассмотрены прямые методы вариационного исчисления и методы преобразования вариационных задач, приводящие, в частности, к двойственным вариационным принципам. Учебник завершают примеры из физики, механики и техники, в которых показана эффективность методов вариационного исчисления и оптимального управления для решения прикладных задач.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана. Для студентов и аспирантов технических университетов, а также для инженеров и научных работников, специализирующихся в области прикладной математики и математического моделирования.
Скачать(1,8 Мб)

XVI. Теория вероятностей
Теория вероятностей: Учеб. для вузов. - 3-е изд., испр. / А.В. Печинкин, О.И. Тескин, Г.М. Цветкова и др.; Под ред. B.C. Зарубина, А.П. Крищенко. - М.: Изд-во МГТУ им. Н.Э.Баумана, 2004. -456 с. (Сер. Математика в техническом университете; Вып. XVI).
Отличительной особенностью данной книги является взвешенное сочетание математической строгости изложения основ теории вероятностей с прикладной направленностью задач и примеров, иллюстрирующих теоретические положения. Каждую главу книги завершает набор большого числа контрольных вопросов, типовых примеров и задач для самостоятельного решения. Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Скачать ( 2,87 Mb)

XVII. Математическая статистика
Математическая статистика: Учеб. для вузов / В. Б. Горяинов, И. В. Павлов, Г. М. Цветкова, О. И. Тескин.; Под ред. B.C. Зарубина, А.П. Крищенко. - М.: Иэд-во МГТУ им. Н.Э. Баумана, 2001. 424 с. (Сер. Математика в техническом университете; Вып. XVII).
Предлагаемая книга знакомит читателя с основными понятиями математической статистики и некоторыми из ее приложении. Ее отличительной особенностью является взвешенное сочетание математической строгости с прикладной направленностью задач. Каждую главу книги завершает большой набор типовых примеров, контрольных вопросов и задач для самостоятельного решения.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
(За ссылку на книгу большое спасибо  M128K145)
Скачать ( 4,2 Мб)

XVIII. Случайные процессы
Волков И.К., Зуев СМ., Цветкова Г.М. Случайные процессы: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - М.: Изд-во МГТУ им. Н.Э. Баумана, 1999. -448 с. (Сер. Математика в техническом университете; Вып. XVIII).
Книга является восемнадцатым выпуском учебного комплекса „Математика в техническом университете" и знакомит читателя с основными понятиями теории случайных процессов и некоторыми из ее многочисленных приложении. По замыслу авторов, данный учебник должен явиться связующим звеном между строгими математическими исследованиями, с одной стороны, и практическими задачами — с другой. Он должен помочь читателю овладеть прикладными методами теории случайных процессов.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана. Для студентов технических университетов. Может быть полезен преподавателям и аспирантам.
Скачать ( 2,87 Mb)

XIX. Дискретная математика
Белоусов А.И., Ткачев СБ. Дискретная математика: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - 3-е изд., стереотип. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. -744 с. (Сер. Математика в техническом университете; Вып. XIX).
В девятнадцатом выпуске серии „Математика в техническом университете" изложены теория множеств и отношений, элементы современной абстрактной алгебры, теория графов, классические понятия теории булевых функций, а также основы теории формальных языков, куда включены теории конечных автоматов, регулярных языков, контекстно-свободных языков и магазинных автоматов. В анализе графов и автоматов особое внимание уделено алгебраическим методам.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
Скачать (5,8 Мб)

XX. Исследование операций
Волков И.К., Загоруйко Е.А. Исследование операций: Учеб для вузов / Под ред. В.С. Зарубина, А П. Крищенко. - М.: Иэд-во МГГУ им. Н.Э. Баумана. 2000 - 436 с (Сер Математика в техническом университете. Вып. XX).
Исследование операций аккумулирует те математические методы, которые используются для принятия обоснованных решений в различных областях человеческой деятельности. В учебной литературе эта дисциплина еще не нашла полного отражения, хотя владеть ее методами современному инженеру необходимо.
В книге основное внимание уделено постановке задач исследования операций, методам их решения и критериям выбора альтернатив. Рассмотрены методы линейного и целочисленного программирования, оптимизация на сетях, марковские модели принятия решений, элементы теории игр и имитационного моделирования. Значительное число примеров поможет при изучении материала. Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
Скачать (2Мб)

XXI. Математическое моделирование в технике
Зарубин B.C. Математическое моделирование в технике: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - 2-е изд., стереотип. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2003. -496 с. (Сер. Математика в техническом университете; Вып. XXI, заключительный).
Книга является дополнительным, двадцать первым выпуском комплекса учебников „Математика в техническом университете", завершающим издание серии. Она посвящена применению математики к решению прикладных задач, возникающих в различных областях техники. В нее включен предметный указатель ко всему комплексу учебников. Содержание учебника соответствует курсу „Основы математического моделирования", читаемому автором в МГТУ им. Н.Э. Баумана.
Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
Скачать (4, 3 Мб)



NEWПанов В.Ф. Математика древняя и юная/Под ред. B.C. Зарубина. — 2-е изд., испр.— М.: Изд-во МГТУ им. Н. Э. Баумана, 2006. — 648 с: ил. ISBN 5-7038-2890-2
Книга является дополнением к комплексу учебников серии «Математика в техническом университете» и знакомит читателя с основными фрагментами истории становления современной математики. В ее основу положены лекции по курсам «Введение в специальность» и «История математики», читаемым автором студентам МГТУ им. Н. Э. Баумана, обучающимся по специальности «Прикладная математика». В первой части книги основное внимание уделено биографиям творцов математики и тех мыслителей, чьи идеи оказали решающее влияние на развитие этой науки. Во второй части изложена история некоторых основных математических понятий и идей.
Для студентов технических вузов и учителей математики, а также всех, интересующихся историей науки
Скачать (djvu/rar, 4.69 Мб)



Все книги одним архивом (спасибо  Trotil ):
Торрент


Книги в основном в формате djvu. Для чтения файлов данного формата скачатьWinDjView-1.0 (885Кб) || WinDjView-1.0.1-Setup.exe" (2,71 Мб) || страница с последней версией WinDjView
См. также раздел "Программы; архиваторы; форматы pdf, djvu и др." на alleng.ru

Ссылки на посты аналогичной тематики:


Полные курсы по высшей математике
Руководства по решению задач ("Решебники" по высшей математике)
Литература по линейной алгебре
Литература по аналитической геометрии
Литература по дискретной математике
Литература по математической логике и теории алгоритмов
Литература по теории вероятностей и математической статистике (часть 1)
Литература по теории вероятностей и математической статистике (часть 2)
Литература по дифференциальным уравнениям
Литература по ТФКП и операционному исчислению
Литература по теории чисел
Математика для... (биологов/экономистов/гуманитариев/юристов/физиков/инженеров)
Литература по линейному, математическому программированию и исследованию операций
Литература по криптографии
Литература по высшей (абстрактной) алгебре
Серия "Математика в техническом университете" (МГТУ им Баумана)
Литература по теории многочленов
Литература по истории математики
Босс В. Лекции по математике
Литература по математике для поступающих в вузы(часть I)
Литература по математике для поступающих в вузы(часть II)
Государственная (итоговая) аттестация (ГИА) выпускников 9-х классов
Литература по подготовке к ЕГЭ по математике (Часть I)
Литература по подготовке к ЕГЭ по математике (Часть II)
Литература по геометрии для школьников
Книги, посвященные задачам с параметрами
Литература по подготовке к математическим олимпиадам (часть I)
Литература по подготовке к математическим олимпиадам (часть II)
Литература для подготовки к С6 ЕГЭ-2010 по математике (теория чисел)
Mathematical Olympiad in China
Пособия для подготовки к ЕГЭ Корянова А.Г., Прокофьева А.А.