Множество действительных чисел произвольным образом разделили на два непересекающихся подмножества. Докажите, что для каждой пары натуральных чисел `(m, n)` существуют действительные числа `x < y < z`, принадлежащие одному из подмножеств, для которых `m*(z-y) = n*(y-x)`.