Дан треугольник `ABC`. Прямые `r` и `s` - биссектрисы углов `ABC` и `BCA`, соответственно. Точки `E` на `r` и `D` на `s` такие, что `AD || BE` и `AE || CD`. Прямые `BD` и `CE` пересекаются в точке `F`. `I` - центр вписанной окружности треугольника `ABC`. Докажите, что если `A,F,I` лежат на одной прямой, то `AB=AC`.
| 
|
Сначала прочитал как страшненькие, не удивился