Прочитайте, как обстоят дела у сайта Дневников и как вы можете помочь!
×

EDUCATION EXPANDS KNOWLEDGE

МЫ НЕ РЕШАЕМ ЗА ВАС - МЫ ПОМОГАЕМ РЕШАТЬ!


| ЦЕЛИ СООБЩЕСТВА | АДМИНИСТРАЦИЯ СООБЩЕСТВА | МОДЕРАТОРЫ СООБЩЕСТВА |
Основала сообщество и бессменно руководила им с 2006 по 2012 г. рано ушедшая из жизни Robot, вложившая в него свои силы, знания, опыт, доброту и стремление к бескорыстной помощи.
ПРАВИЛА СООБЩЕСТВА
|НЕКОТОРЫЕ СОВЕТЫ ПО ОФОРМЛЕНИЮ|КАК ПРАВИЛЬНО ЗАПОЛНИТЬ @ТЕМУ|


Если вы хотите научиться плавать, то смело входите в воду,
а если хотите научиться решать задачи — решайте их (Д. Пойа).

Научился сам - не мешай научиться другому.
URL
  • ↓
  • ↑
  • ⇑
 
05:40 

Построение графика незамкнутого эллипса

blackhawkjkee
Здравствуйте, хочу разобраться как вывести формулу для построения графика незамкнутого эллипса.
Нужный мне график я нарисовал на картинке ниже.
Изучал все это дело года 3 назад, но не думал что это может понадобится в личных целях. Теперь вот жалею :c

График

@темы: Векторная алгебра

22:55 

Нерешаемый интеграл

Здравствуйте!

Задача следующая:

Вычислить объем тела, ограниченного поверхностями:

`x=-1, x=1, y=0, y=1/(x^2+1), z=0, z=1/(e^x+1)`.

Вычисляю тройной интеграл:

`V=int_(-1)^1 dx int_0^(1/(x^2+1)) dy int_0^(1/(e^x+1)) dz = int_(-1)^1 dx/((x^2+1)(e^x+1)) `

У меня не получается вычислить получившийся интеграл. Wolframalpha тоже пишет, что этот интеграл не разрешим в элементарных функциях.

Прошу помощи.

@темы: Интегралы

10:15 

Анекдоты из Квантика

Холщовый мешок
Знаменитый русский писатель-сатирик Салтыков-Щедрин читать дальше

При дворе французского короля Людовика XI был читать дальше

Однажды осенью известный композитор Алябьев читать дальше

Эксперты считают, что школы нуждаются в современных и понятных детям учебниках математики

Доктор физико-математических наук из Санкт-Петербурга Юрий Циовкин отметил, что старые учебники не соответствуют требованиям времени

Подробнее на ТАСС: tass.ru/obschestvo/4735726

@темы: Образование

20:49 

Угол - это место, где я провёл часть своего детства

wpoms.
Step by step ...


Точка $D$ на стороне $BC$ остроугольного треугольника $ABC$ выбрана так, что $AD = AC.$ Пусть $P$ и $Q$ будут, соответственно, основаниями перпендикуляров, опущенных из $C$ и $D$ на сторону $AB.$ Известно, что $AP^2 + 3BP^2 = AQ^2 + 3BQ^2$.
Найдите величину угла $ABC.$



@темы: Планиметрия

17:38 

Неравенство

Здравствуйте, подскажите, пожалуйста, как решить следующее задание:
1.Решить неравенство -2(x^2)sin2x>=x^2.
x^2+4x^2sinx*cosx<=0
x^2(1+2sin(2x))<=0
Нули:
x1=0
x2=pi*n-7/12pi
x3=pi*n-pi/12

@темы: Тригонометрия, Иррациональные уравнения (неравенства), ЕГЭ

08:45 

Центр масс

Холщовый мешок
В стене имеется маленькая дырка (точка). У хозяина есть флажок следующей формы (см. рисунок).
изображение
Покажите на рисунке все точки, в которые можно вбить гвоздь, так чтобы флажок закрывал дырку.


@темы: Порешаем?!

06:51 

Показательно-степенное уравнение

Доброго времени суток!

Требуется решить уравнение:

`(x-3)^(x^2+x)=(x-3)^(7x-5)`

Насколько мне известно, показательно-степенные уравнения решают в предположении, что основание степени положительно. В данном случае `x-3>0`.

Но при решении квадратного уравнения `x^2+x=7x-5` получаем корень `x=1`, который не входит в ОДЗ, но является корнем исходного уравнения, так как `-2^2=-2^2`.

Так же получаем корень `x=3`, не входящий в ОДЗ, если приравниваем основание степени к нулю (но насколько я понимаю, это допустимо)

Прошу помощи разобраться, можно ли указывать корни `x=1` и `x=3` в ответе.

@темы: Школьный курс алгебры и матанализа

07:34 

Открыта новая версия сайта «Математическое образование»

Холщовый мешок
Пишет shevkin.ru:

Уважаемые коллеги — учителя, научные сотрудники, родители учащихся! Если вас интересует история российского математического образования, практические материалы — статьи, сборники задач, диафильмы и т. п. наших предшественников, то много интересного вы найдете на сайте «Математическое образование». Об открытии его новой версии сообщает Василий Михайлович Бусев.

Уважаемые коллеги!

Сообщаю, что открыта новая версия сайта «Математическое образование»: www.mathedu.ru/ Старая доступна по адресу old.mathedu.ru/
Буду признателен за замечания и предложения, которые можно направлять по адресу mail@mathedu.ru.
Проект негосударственный, некоммерческий, и ему нужна финансовая поддержка. Буду рад услышать ваши идеи о том, где (у кого) такую поддержку можно получить. Подробнее см. в разделе «О проекте» (www.mathedu.ru/about/donate.html).
Пожалуйста, перешлите данное сообщение своим коллегам.


С уважением,
отв. редактор ЭБ «Математическое образование»
Василий Михайлович Бусев
www.mathedu.ru/
mail@mathedu.ru


Дополнение. На этом сайте я нашёл интересные материалы по дискуссиям середины прошлого века о методике обучения решению текстовых задач, нашёл аргументы за изучение различных типов текстовых задач, звучавшие ещё тогда, когда я был младшим школьником. Эти аргументы остаются актуальными и сегодня, когда нам навязывают западные цели и модели обучения. Надо знать свои корни, крепко за них держаться, тогда нас не сорвёт с места и не унесёт в пропасть реформа математического образования, проводимая с непонятными, с точки зрения интересов нашего образования, целями.

@темы: Образование

21:23 

Геометрический смысл производной

Парабола является графиком производной функции y=f(x). Сколько точек экстремума имеет функция y=f(x)?

@темы: Касательная, Производная

14:28 

Геометрический смысл производной

К параболе y=2x^2-5x+3 через начало координат проведены две касательные с угловыми коэффициентами k1 и k2. Найдите произведение k1*k2.

y'=4x-5
Xв=1.25
Как найти k1 и k2?

@темы: Школьный курс алгебры и матанализа, Касательная, ЕГЭ

10:36 

Какие же они тупые. (с) 2000+2000=20002000, а не 22000!

Холщовый мешок
09:36 

Метод максимального правдоподобия

Добрый день!
Задание следующее:

Результаты 100 независимых наблюдений представлены в виде вариационного ряда:

`x_i` 1 2 3 4 5 6 7

`n_i` 5 10 20 35 10 15 5

Считая, что случайная величина Х распределена по закону с плотностью
`f(x)=2a^2xe^(-a^2x^2)`, `x>=0`

Найти оценку параметра `a` по методу максимального правдоподобия.

Раньше я решал подобные задачи, но в них была только дискретная случайная величина `x_1, x_2, ..., x_k`.
В таком случае функция правдоподобия была равна

`L(x_1,...,x_k,a)=f(x_1,a)...f(x_k,a)`.

Но здесь мы имеем вариационный ряд. Интуиция подсказывает, что должно быть так:

`L(n_1x_1,...,n_kx_k,a)=f(n_1x_1,a)...f(n_kx_k,a)`.

Верны ли мои догадки?

@темы: Теория вероятностей

06:56 

Война и мир

Холщовый мешок


Слева и справа находятся два города, населенные воинственными народами. Города соединены касательными дорогами. Между ними находится нейтральный город, ворота которого расположены в точках касания его стен с дорогами. Найдите расстояние от перекрестка до ближайших ворот нейтрального города, если известны размеры всех трёх городов.

@темы: Планиметрия

11:19 

Холщовый мешок
Левитин А., Левитина М. Алгоритмические головоломки; пер. с англ. Ж. А. Меркуловой, Н. А. Меркулова.
М. : Лаборатория знаний, 2018.—325 с. : ил.

Книга является уникальной коллекцией 150 головоломок, каждая из которых снабжена указанием и решением. Задачи сгруппированы в зависимости от уровня сложности. Издание дополнено двумя обучающими разделами по стратегиям разработки и анализа алгоритмов.
В настоящее время алгоритмические головоломки часто используются на собеседованиях при приеме на работу. Они призваны развить аналитическое мышление и просто разнообразить досуг.
Для всех любителей математики.


читать дальше

@темы: Литература, Порешаем?!

20:23 

Level up

wpoms.
Step by step ...


Юлиан пишет в клетки доски размером $1\times100$ все целые числа от 1 до 100 включительно в некотором порядке, без повторений. Из каждых трех последовательных клеток он отмечает клетку, в которой записано среднее по величине число из трёх чисел, записанных в этих клетках. Например, если в трёх клетках записаны числа 7, 99 и 22, то он отметит клетку с числом 22. Пусть $S$ будет суммой чисел в отмеченных клетках. Найдите минимальное значение, которое может принимать $S.$
Пояснение. Каждое число из отмеченных клеток суммируется однократно, но клетки могут отмечаться более одного раза.



@темы: Олимпиадные задачи

11:13 

Биномиальные коэффициенты

Прошу подсказать,

Дано выражение

7С20 - 8С20 + 9С20 - 10С20 +....+19С20 - 20С20

Запись не очень нормальная. Имеются ввиду биномиальные коэффициенты из комбинаторики.

Интуитивно чувствую, что надо применить вторую формулу
mathemlib.ru/mathenc/item/f00/s00/e0000504/pic/490_07.jpg

т.к. знаки чередующиеся.

Я пришел к тому, что данное выражение равно
0C20 - 1C20 + 2C20 - 3C20 + 4C20 - 5C20 + 6C20

А дальше тупик(

@темы: Комбинаторика

03:28 

О неточности

Холщовый мешок
Вольфсон Г. И. и др. ЕГЭ 2018. Математика. Арифметика и алгебра. Задача 19 (профильный уровень) / Под ред. И. В. Ященко. — М.: МЦНМО, 2018. — 112 с.

Пособия по математике серии «ЕГЭ 2018. Математика» ориентированы на подготовку учащихся старшей школы к успешной сдаче единого государственного экзамена по математике. В данном учебном пособии представлен материал для подготовки к решению задачи 19.
Пособие предназначено для учащихся старшей школы, учителей математики, родителей.
Издание соответствует Федеральному государственному образовательному стандарту (ФГОС).

Приказом № 729 Министерства образования и науки Российской Федерации Московский центр непрерывного математического образования включен в перечень организаций, осуществляющих издание учебных пособий, допущенных к использованию в образовательном процессе.


читать дальше

@темы: Литература

22:28 

Холщовый мешок
Элементы математики в задачах. Через олимпиады и кружки — к профессии, под редакцией А.А. Заславского, А.Б. Скопенкова и М.Б. Скопенкова, 2-е изд., испр. и доп. - МЦНМО, 2018, 592 стр.
В данный сборник вошли материалы выездных школ по подготовке команды Москвы на Всероссийскую олимпиаду. Задачи, приводимые в большинстве материалов, подобраны так, что в процессе их решения читатель (точнее, решатель) освоит основы важных математических теорий. Материалы сборника могут использоваться как преподавателями, так и школьниками или студентами для самостоятельных занятий. К ключевым задачам приведены указания или решения.

либген, черновая версия от 2017.04.15

Блинков Ю.А., Горская Е.С. Вписанные углы - МЦНМО, 2017, 168 стр.
Семнадцатая книжка серии «Школьные математические кружки» посвящена геометрическим задачам и конструкциям, связанным со вписанными углами. Книжка предназначена для занятий со школьниками 7-11 классов. В неё вошли разработки десяти занятий математического кружка с подробно разобранными примерами различной сложности, задачами для самостоятельного решения и методическими указаниями для учителя. В приложении приведён большой список дополнительных задач различного уровня трудности. Отдельная часть этого раздела посвящена понятию антипараллельности. Для удобства использования заключительная часть книжки сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям элементарной геометрии.

либген, озон

Высоцкий И. Кружок по теории вероятностей - М.: МЦНМО, 2017. — 128 с.
Сборник составлен по материалам кружка МЦНМО, который проводился в 2015—2017 годах для школьников 8—9 классов. Задачи сгруппированы по занятиям, а занятия —по темам. Последовательность занятий устроена так, что сборник имеет обучающий характер. Большинство новых терминов и методов вводится через задачи. В конце сборника даны ответы и указания к решению, а также алфавитный справочник. В справочник вошли разъяснения многих терминов, формул и методов с примерами, иногда — с доказательствами. При этом предполагается, что у читателя имеются базовые знания теории вероятностей, хотя бы в объеме школьного учебника 7—8 классов.
Сборник предназначен для мотивированных школьников, интересующихся студентов, а также для руководителей кружков по теории вероятностей. Может быть использован для подготовки к олимпиадам по теории вероятностей и статистике.

либген, озон, сайт кружка

@темы: Литература

08:24 

Женская сборная России досрочно выиграла командный чемпионат Европы

Холщовый мешок
по шахматам.

изображение

zadachi.mccme.ru/2012/#&task10235

10235. Точка E — середина боковой стороны CD трапеции ABCD. На стороне AB отмечена точка K так, что CK ‖ AE. Отрезки CK и BE пересекаются в точке O.
а) Докажите, что CO = KO.
б) Найдите отношение оснований BC и AD, если площадь треугольника BCK составляет 9/64 площади трапеции.

Решение. а) Пусть прямые AE и BC пересекаются в точке F. Треугольники FEC и AED равны по стороне (CE = DE) и двум прилежащим к ней углам. Значит, AE = EF, т. е. BE — медиана треугольника ABF, а так как CK ‖ AF, то BO — медиана треугольника KBC, т. е. O — середина отрезка KC.


Докажите п. а) без построения точки пересечения прямых AE и BC другим способом.

@темы: Порешаем?!, Планиметрия, ЕГЭ

19:15 

Игра

wpoms.
Step by step ...


Алекс и Биби играют в игру. Алекс выбирает натуральное число $k$ меньшее или равное 1000. Затем Биби составляет коллекцию $B,$ содержащую более $k$ целых чисел из диапазона от 0 до 1000 включительно, числа в коллекции могут повторятся. После этого Алекс многократно применяет к $B$ такую операцию: он выбирает $k$ чисел из $B$ и меняет их. Каждое выбранное число $b$ он заменяет на число $b+1,$ если $b$ меньше $1000,$ и заменяет $b$ на 0, если $b = 1000.$ Алекс выигрывает, если после выполнения нескольких операций все числа в коллекции $B$ станут равными 0, если он не сможет добиться этого результата, то выиграет Биби. Найдите все $k$ такие, что Алекс сможет гарантированно выиграть, вне зависимости от выбора Биби чисел для коллекции.



@темы: Олимпиадные задачи

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная