Ознакомьтесь с нашей политикой обработки персональных данных

EDUCATION EXPANDS KNOWLEDGE

МЫ НЕ РЕШАЕМ ЗА ВАС - МЫ ПОМОГАЕМ РЕШАТЬ!


| ЦЕЛИ СООБЩЕСТВА | АДМИНИСТРАЦИЯ СООБЩЕСТВА | МОДЕРАТОРЫ СООБЩЕСТВА |
Основала сообщество и бессменно руководила им с 2006 по 2012 г. рано ушедшая из жизни Robot, вложившая в него свои силы, знания, опыт, доброту и стремление к бескорыстной помощи.
ПРАВИЛА СООБЩЕСТВА
|НЕКОТОРЫЕ СОВЕТЫ ПО ОФОРМЛЕНИЮ|КАК ПРАВИЛЬНО ЗАПОЛНИТЬ @ТЕМУ|


Если вы хотите научиться плавать, то смело входите в воду,
а если хотите научиться решать задачи — решайте их (Д. Пойа).

Научился сам - не мешай научиться другому.
URL
  • ↓
  • ↑
  • ⇑
 
22:50 

Функции

wpoms.
Step by step ...


Найдите все функции `f: \mathbb{R} \to \mathbb{R}` такие, что для всех `x,\ y \in \mathbb{R}` выполняется
`f(x+yf(x+y)) = y^2 + f(xf(y+1))`.




@темы: Функции

02:23 

Финское национальное математическое соревнование для старшеклассников

wpoms.
Step by step ...


Финское национальное математическое соревнование для старшеклассников

Финское национальное математическое соревнование для старшеклассников (Lukion matematiikka­kilpailu) проводится MAOL, финской ассоциацией учителей математики, физики, химии и информатики.

С 1997 года соревнование проводится в два раунда: В первом раунде, который проводится для трёх возрастных групп, определяются школьники, которые примут участие в финале. Квота для самых старших - 15, для следующей по возрасту категории - 4 и для самой юной - 1. В финале всем предлагаются одинаковые задания, но итоги подводятся отдельно для каждой возрастной группы.

Задачи олимпиады


@темы: Олимпиадные задачи

01:20 

Наибольшее

wpoms.
Step by step ...


Пусть $n \geq 2$ --- натуральное число. Для каждого $n$-элементного подмножества $F$ множества $\{1, \ldots, 2n\},$ определим $m(F)$ как минимум всех НОК$(x, y),$ где $x$ и $y$ --- два различных элемента $F.$ Найдите наибольшее значение, которое может принимать $m(F).$



@темы: Теория чисел

16:59 

Дунайское математическое соревнование

wpoms.
Step by step ...
Дунайское математическое соревнование

Дунайское математическое соревнование (Mathematical Danube Competition) - это тренировочное соревнование, в котором принимают участие школьники из Румынии, Болгарии, Молдовы.

Задачи олимпиады

@темы: Олимпиадные задачи

13:50 

Олимпиада Бенилюкс

wpoms.
Step by step ...
Олимпиада Бенилюкс

Математическая олимпиада Бенилюкса (The Benelux Mathematical Olympiad - BxMO) - математическое соревнование, в котором принимают участие старшеклассники из Бельгии, Люксембурга и Нидерландов. Участникам предлагаются 4 задачи, в основном соответствующие уровню простых задач ИМО или более легкие. В состав делегации от каждой страны входят 10 школьников и трое сопровождающих. Половина участников награждается бронзовыми, серебряными и золотыми медалями в отношении 3:2:1.

Задачи олимпиады

@темы: Олимпиадные задачи

02:00 

Про отроцентр

wpoms.
Step by step ...


Пусть `H` --- ортоцентр остроугольного треугольника `ABC`. `G` --- точка пересечения прямой, параллельной `AB` и проходящей через `H`, и прямой, параллельной `AH` и проходящей через `B`. Точка `I` выбрана на прямой `GH` так, что `AC` пересекает отрезок `HI` в его середине. `J` --- вторая точка пересечения `AC` с описанной около треугольника `CGI` окружностью. Покажите, что `IJ = AH`.



@темы: Планиметрия

07:37 

C6, квадраты чисел

Здравствуйте всем.

Решая задачу C6 из Открытого банка заданий ЕГЭ пришел к другой задаче, которую достаточно долго ;-) не могу решить. Итак, производная задача.

Можно ли разбить квадраты последовательных натуральных чисел `1,4,9,...,(N-1)^2,N^2` на две группы так, чтобы суммы чисел в каждой группе были равными, если: а) N=49; б) N=40?

Она в принципе решается?
Откуда это взято?
Может, это какая-то известная задача?

Кроме
А. Канель, А. Ковальджи. Как решают нестандартные задачи

Р. М. Федоров, А. Я. Канель-Белов, А. К. Ковальджи, И. В. Ященко. Московские математические олимпиады
какую книгу порекомендовали бы лично Вы?

читать дальше

В общем, смотри мои вопросы выше. Спасибо.

@темы: ЕГЭ, Олимпиадные задачи, Посоветуйте литературу!, Теория чисел

19:30 

Южно-южно-американская математическая олимпиада

wpoms.
Step by step ...
Южно-южно-американская математическая олимпиада

С 1989 года проводится олимпиада стран южной части Южной Америки (Олимпиада стран Южного Конуса - Olimpíada Matemática de Países del Cono Sur). В олимпиаде принимают участие сборные Аргентины, Боливии, Бразилии, Чили, Эквадора, Парагвая, Перу и Уругвая.
В состав сборной каждой страны входят не более четырёх участников и двух сопровождающих. Для решения предлагаются 6 задач, по три задачи в день.

1. Сайт олимпиады 2017 года
2. Задачи олимпиады на портале artofproblemsolving.com

@темы: Олимпиадные задачи

13:32 

Ибероамериканская математическая олимпиада

wpoms.
Step by step ...
Ибероамериканская математическая олимпиада

С 1985 года проводится олимпиада стран Пиренейского полуострова и других испано- и португалоязычных стран (Olimpíada Iberoamericana de Matemática). На постоянной основе в олимпиаде принимают участи сборные Аргентины, Боливии, Бразилии, Чили, Колумбии, Коста-Рики, Кубы, Эквадора, Сальвадора, Гватемалы, Гондураса, Мексики, Мозамбика, Никарагуа, Панамы, Перу, Португалии, Пуэрто-Рико, Доминиканской республики, Испании, Уругвая и Венесуэлы. Страна-организатор может пригласить другие испано- и португалоязычные страны.
В состав сборной каждой страны входят не более четырёх участников и двух сопровождающих. Для решения предлагаются 6 задач, по три задачи в день.
В олимпиаде 2016 года приняли участие сборные Анголы, Аргентины, Боливии, Бразилии, Кабо-Верде, Чили, Колумбии, Коста-Рики, Кубы, Эквадора, Сальвадора, Испании, Гватемалы, Гондураса, Мексики, Мозамбика, Никарагуа, Панамы, Парагвая, Перу, Португалии, Пуэрто-Рико, Доминиканской Республика, Сант-Томе и Принсипи, Уругвая и Венесуэлы.


1. Сайт олимпиады 2016 года
2. Задачи олимпиады на портале artofproblemsolving.com

@темы: Олимпиадные задачи

11:28 

Олимпиада стран Центральной Америки и Карибского моря

wpoms.
Step by step ...
Олимпиада стран Центральной Америки и Карибского моря

С 1999 года проводится олимпиада стран Центральной Америки и Карибского моря (Olimpiada Matemática Centroamérica y el Caribe). В состав сборной каждой страны входят не более трёх участников и двух сопровождающих. Для решения предлагаются 6 задач, по три задачи в день. В олимпиаде 2017 года приняли участие сборные Колумбии, Коста-Рики, Кубы, Сальвадора, Гватемалы, Гаити, Гондураса, Ямайки, Мексики, Никарагуа, Панамы, Пуэрто-Рико, Доминиканы, Венесуэлы.

1. Сайт олимпиады 2017 года
2. Задачи олимпиады на портале artofproblemsolving.com

@темы: Олимпиадные задачи

06:57 

Олимпиада Португальского мира

wpoms.
Step by step ...
Олимпиада Португальского мира

С 2011 года проводится олимпиада португалоязычных стран (Olimpíada de Matemática da Comunidade dos Países de Língua Portuguesa aka Olimpíada de Matemática da Lusofonia). В состав сборной каждой страны входят не более четырех участников и двух сопровождающих. Для решения предлагаются 6 задач, по три задачи в день. В олимпиаде 2016 года приняли участие сборные Анголы, Бразилии, Кабо-Верде, Гвинеи-Бисау, Мозамбика, Португалии, Сан-Томе и Принсипи и Восточного Тимора.

1. Сайт олимпиады 2016 года
2. Задачи олимпиады на портале artofproblemsolving.com

@темы: Олимпиадные задачи

19:29 

На окружности

wpoms.
Step by step ...


На окружности выбраны `2*n` различных точек. Числа от `1` до `2*n` случайным образом распределены по всем этим точкам. Каждая точка соединена отрезком ровно с одной другой точкой так, что проведенные отрезки не пересекаются. Отрезку, соединяющему числа `a` и `b`, сопоставляется значение `|a - b|`. Покажите, что возможно соединить точки описанным выше способом так, чтобы сумма значений, сопоставленных всем отрезкам, была равна `n^2`.



@темы: Комбинаторика, Теория чисел

14:01 

Линейный оператор

Является ли линейным оператором, действующим на пространстве
тригонометрических многочленов вида a + b cos x + c sin x, отображение
I : a + b cos x + c sin x -> интеграл от 0 до пи
sin(x + y)(a + b cos y + c sin y)dy?

@темы: Линейная алгебра

14:11 

Срезка функции

Здравствуйте! Помогите, пожалуйста, решить следующую задачу:
дана функция u(x)=1/(||x||^2), где ||.|| - норма функции.
Посчитать срезку этой функции в шаре K(0) с центром в начале координат.
Я пробовала посчитать по определению срезки, но преподаватель не принял.

читать дальше

Скажите, в чем ошибка? Как посчитать эту срезку?

@темы: Уравнения мат. физики

20:35 

Множество рациональных чисел

IWannaBeTheVeryBest
Доказать, что не существует таких рациональных `a,b,c,d`, что
`(a + bsqrt(3))^4 + (c + dsqrt(3))^4 = 4 + 3sqrt(3)`
Можете подсказать литературку какую-нибудь, что могло бы натолкнуть на мысль, как тут действовать.
Сейчас буду гуглить свойства рациональных чисел. Но ощущение, что вряд ли это настолько тривиально

@темы: Теория чисел

18:13 

Интересные рядом

wpoms.
Step by step ...


Последовательность `a_n`, состоящая из натуральных чисел, определяется равенствами `a_1 = m` и `a_n = a_{n-1}^2 + 1` при `n > 1`.
Пара `(a_k, a_l)` называется интересной, если
(i) `0 < l - k < 2016`
(ii) `a_k` делит `a_l`.
Покажите, что существует такое `m`, что в последовательности `a_n` нет интересных пар.



@темы: Теория чисел

13:52 

Про окружности

wpoms.
Step by step ...


Дан треугольник $ABC$ с прямым углом $C$. Точка $M$ --- середина $AB.$ Точка $G$ лежит на отрезке $MC$ и точка $P$ --- на прямой $AG$, при этом $\angle CPA = \angle BAC.$ Точка $Q$ лежит на прямой $BG$ и $\angle BQC = \angle CBA.$ Покажите, что окружности, описанные около треугольников $AQG$ и $BPG$, пересекаются на отрезке $AB.$



@темы: Планиметрия

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная