Step by step ... Informazioni sulle gare, come allenarsi, chi corrompere.
Дан треугольник `ABC`. Точки `D, E, F` - середины сторон `BC`, `CA`, `AB`, соответственно. Докажите, что `/_DAC = /_ABE` тогда и только тогда, когда `/_AFC = /_ADB`.
Достроим треугольник `ABC` до параллелограмма `AB_1CB`. Пусть `M` – точка пересечения медиан треугольника `ABC`. При гомотетии с центром `M` и коэффициентом `k=-3` четырёхугольник `DMFB` перейдёт в четырёхугольник `AMCB_1`. Отсюда следует, что четырёхугольник `DMFB` является вписанным в окружность тогда и только тогда, когда четырёхугольник `AMCB_1` является вписанным в окружность. Далее воспользуйтесь признаками четырёхугольника, вписанного в окружность.
Достроим треугольник `ABC` до параллелограмма `AB_1CB`. Пусть `M` – точка пересечения медиан треугольника `ABC`. При гомотетии с центром `M` и коэффициентом `k=-3` четырёхугольник `DMFB` перейдёт в четырёхугольник `AMCB_1`.
Отсюда следует, что четырёхугольник `DMFB` является вписанным в окружность тогда и только тогда, когда четырёхугольник `AMCB_1` является вписанным в окружность.
Далее воспользуйтесь признаками четырёхугольника, вписанного в окружность.
читать дальше