Есть у славян такое слово – «мрия» - что значит: ожидание, мечта
Здравствуйте, срочно нужна помощь!!! Вот, несколько заданий, которые нужно уже завтра утром сдать!!!! Помогите, пожалуйста…хотя бы, подскажите, где можно найти решения подобных заданий….
1. Как решать систему уравнений методом Гаусса???
Вот система: 3х1+1х2+2х3=В1
5х1+0х2+ (-4)х3=В2
1х1+2х2+8х3=В3
Подскажите, пожалуйста. Хотя бы примерно, как это делается!!!
2. Решить матричное уравнение: AXB +m AB = C
A: B: C: m:
1 -1 0 2 1 1 -1
-1 0 3 0 0 -7
3. Даны векторы: a = (2, 1, -1), b = (1, 1, 2), c= (1, -1, 3)
Требуется: Найти длину вектора с, установить, является ли система векторов abc линейно зависимой
4. Даны координаты точек: A1 (1, 5), A2 (4, 4), A3 (-2, 1)
Требуется: Найти общее уравнение прямой (L1), проходящей через точки A1 и A2, найти уравнение прямой (L2), проходящей через точку A3 параллельно прямой (L1), найти расстояние между прямыми (L1) и (L2), написать уравнение прямой, проходящей через точку A3 перпендикулярно прямой L1 : А1А2 и найти координаты точки пересечения этих прямых, построить схематический чертеж
1. Как решать систему уравнений методом Гаусса???
Вот система: 3х1+1х2+2х3=В1
5х1+0х2+ (-4)х3=В2
1х1+2х2+8х3=В3
Подскажите, пожалуйста. Хотя бы примерно, как это делается!!!
2. Решить матричное уравнение: AXB +m AB = C
A: B: C: m:
1 -1 0 2 1 1 -1
-1 0 3 0 0 -7
3. Даны векторы: a = (2, 1, -1), b = (1, 1, 2), c= (1, -1, 3)
Требуется: Найти длину вектора с, установить, является ли система векторов abc линейно зависимой
4. Даны координаты точек: A1 (1, 5), A2 (4, 4), A3 (-2, 1)
Требуется: Найти общее уравнение прямой (L1), проходящей через точки A1 и A2, найти уравнение прямой (L2), проходящей через точку A3 параллельно прямой (L1), найти расстояние между прямыми (L1) и (L2), написать уравнение прямой, проходящей через точку A3 перпендикулярно прямой L1 : А1А2 и найти координаты точки пересечения этих прямых, построить схематический чертеж
Примеры решений можно посмотреть так: diary.ru/~eek/?tag=19061
2. что у вас где в условии - в текстовом виде разобрать невозможно. Может быть, сделаете картинку с нормально записанными исходными данными?
3. а) Длина вектора считается как корень квадратный из суммы квадратов его координат
б) Система из трех векторов линейно зависима тогда и только тогда, когда эти векторы компланарны.
4. - так лень, честно говоря, записывать аналитику, если сделаете - можно проверить будет
1)
в левом столбце есть Темы записей: там выбрать, например, системы линейных уравений для первого задания или Аналитическая геометрия для последнего
2) там же в левом столбце есть Поиск по дневникуу, там можно вбить слова, по которым вести поиск
Я вбила слова Метод Гаусса
www.diary.ru/~eek/?comments&postid=17338791#
www.diary.ru/~eek/?comments&postid=39140915#
www.diary.ru/~eek/?comments&postid=36472559#
Зад. 3б) Хранитель печати уже написал, а проверить можно двумя способами:
1 сп. Выписать матрицу, сторками которой являются данные вектооры и найти определитель
Если он отличен от 0, то система линейно независима, в противном случае
2 сп. Найти ранг данной системы векторов
Даны координаты точек: A1 (1, 5), A2 (4, 4), A3 (-2, 1)
Требуется:1) Найти общее уравнение прямой (L1), проходящей через точки A1 и A2, 2) найти уравнение прямой (L2), проходящей через точку A3 параллельно прямой (L1), 3) найти расстояние между прямыми (L1) и (L2), 4)написать уравнение прямой, проходящей через точку A3 перпендикулярно прямой L1 : А1А2 и 5)найти координаты точки пересечения этих прямых, построить схематический чертеж
1) Написать вектор А1А2(а, b)
Каноническое уравнение прямой будет иметь вид:
(х-х0)/a=(y-y0)/b, где х0,у0 - координаты точки А1
Если перемножить крест накрести перенести все в одну сторону то будет общее уравнение (типа Ax+By+C=0)
2) Так прямая l2 параллельна L1, то ее направляющий вектор тот же А1А2(а, b), поэтому уравнение будет
(х-х1)/a=(y-y1)/b, где х1,у1 - координаты точки А3
3) Расстояние между прямыми (L1) и (L2) - это расстояние от точки А3 до прямой L1
4) Пусть уравнение прямой L1 Ax+By+C=0
Тогда вектор нормали к этой прямой n(A,B)
Уравнение прямой, проходящей через точку A3 перпендикулярно прямой L1, будет задаваться точкой А3 и вектором n(A,B)
(х-х1)/А=(y-y1)/В, где х1,у1 - координаты точки А3
5) нужно решить систему уравнений, составленных из уравнений этих прямых
L1=А1А2: y1=-0.333(3)x + 5,333(3)
L2: y2=y1 - 5
L3: y3=3x + 5
типа того, проверить надо.
L2: х+3у-1=0
L3: 3х-у+7=0