Крайний срок сдачи 16.11.2007
Помогите пожалуста решить вот эти задачи:
читать дальше
Зарание огромное спасибо!!!
Примечание Robot: Буду здесь указывать, что уже сделано
Даны указания по задачам 1,2,6,9,10, 11, 12+3,7,8,14

@темы: Пределы

Комментарии
10.11.2007 в 14:44

Неизвестный смайлик.
1) Долго думал над первой задачей. Мы всегда устно говорили, что так как n стремится к бесконечности, то константы 5 и 1 не котируются. Значит этот придел эквивалентен тому же приделу только без констант. Ну а там n сокращается и получется 2/3

И с остальными примерно в том же духе. У какого n или х больший показатель степени тот и оставлем - остальное побоку.
Но это читерские методы - сейчас мозги придут и все напишут :)
10.11.2007 в 14:44

Мыслить наивно - это искусство
Что не знаешь как вообще?

10.11.2007 в 14:51

Я одна, но всё же я есть. Я не могу сделать всё, но всё же могу сделать что-то. И я не откажусь сделать то немногое, что могу (c)
mobilmir
Целиком контрольные мы не решаем (только отдельные задания), так что в целом ты можешь рассчитывать лишь на подсказки и образцы
Например, задание 1 (очень похожее на твое) здесь
pay.diary.ru/~eek/?comments&postid=33808730# (задание 1.4)
10.11.2007 в 14:52

Мыслить наивно - это искусство
Идея решения везде одна и та же в основном, нужно сократить множители, которые дают неопределённость.

Паломник Оптимизма
Там по определению предела рассматривается, и выражается n через E, если я правильно помню.
Методы нормальные для соответствующих функций.

10.11.2007 в 14:56

Я одна, но всё же я есть. Я не могу сделать всё, но всё же могу сделать что-то. И я не откажусь сделать то немногое, что могу (c)
Задача 2 очень похожа на задачу 2.8 из той же ссылки
Возвести в степени и привести подобные или
в числителе предварительно раскрыть как разность квадратов, а в знаменателе как разность кубов
И далее как в 2.8 или выкладывай результат, дальше покумекаем
10.11.2007 в 15:38

Я одна, но всё же я есть. Я не могу сделать всё, но всё же могу сделать что-то. И я не откажусь сделать то немногое, что могу (c)
Задача 10
Умножить и числитель и знаменатель на sqrt(x+13)+2sqrt(x+1)
В числителеполучится разность квадратов и после приведения подобных -3х+9=-3(х-3)
В знаменателе x^2-9 = (х-3)(х+3) (и еще будет множитель sqrt(x+13)+2sqrt(x+1)
На х-3 сокращаешь и предел дальше считается легко
10.11.2007 в 15:51

Я одна, но всё же я есть. Я не могу сделать всё, но всё же могу сделать что-то. И я не откажусь сделать то немногое, что могу (c)
Задача 11




10.11.2007 в 16:14

Я одна, но всё же я есть. Я не могу сделать всё, но всё же могу сделать что-то. И я не откажусь сделать то немногое, что могу (c)
Задача 9
И числитель , и знаменатель надо разложить на множители
В числителе просто по формуле квадратного трехчлена, в знаменателе сгруппировать первые 2 и последние 2, вынести множители и т.д.
Тогда и в числителе и в знаменателе выскочит множитель х-1
На него сокращаем, неопределенность исчезает, считаем предел
10.11.2007 в 16:22

Я одна, но всё же я есть. Я не могу сделать всё, но всё же могу сделать что-то. И я не откажусь сделать то немногое, что могу (c)
Задача 12




10.11.2007 в 16:40

Я одна, но всё же я есть. Я не могу сделать всё, но всё же могу сделать что-то. И я не откажусь сделать то немногое, что могу (c)
Задача 6 сводится к другому замечтельному пределу
Образец решения




10.11.2007 в 18:03

Мыслить наивно - это искусство
3)
Делим числитель и знаменатель на максимальную степень знаменателя. В смысле x в этой степени.
8)
Рассматриваешь предел функции при x ->3-0 и x ->3+0, если они равны, то непрерывна.
14) Посмотри замечательные пределы.
Там надо разделить на сумму двух пределов, расписать sin2x = 2sinxcosx.
Потому домножить/разделить каждую из дробей на x.
И вроде есть формула. (e^x - 1)/x
Что-то такое)
10.11.2007 в 18:50

Мысль двигает массу.© А я двигаю мысль!
задача 7
Доказывается по определению:
Для любого сколь угодно малого эпсилон > 0 существует дельта >0, что для любого х выполняется: 0< mod(x-3)< дельта следовательно mod([(4x^2 - 14x +6)/3] - 10) < эпсилон

mod - знак модуля
^ - возведение в степень

потом строишь график, на оси ОУ отмечаешь окресности 10+эпсилон и 10-эпсилон.
Затем выбираешь наименьшее дельта


10.11.2007 в 22:19

Всем большое, просто огромное СПАСИБО!!!