Я вам вот что скажу: кто не согласен с моей точкой зрения, тот и на другие подлости способен.
В Сербии состоялась 15-я Сербская математическая олимпиада. В ней приняли участие гости из Боснии и Герцеговины, Македонии, Черногории.



Выпуклый четырехугольник $ABCD$ назовем грубым, если найдется выпуклый четырехугольник $PQRS$, все точки которого лежат внутри или на сторонах четырехугольника $ABCD$, такой, что сумма длин диагоналей $PQRS$ больше суммы длин диагоналей $ABCD$.

Пусть $r>0$ --- действительное число. Пусть выпуклый четырехугольник $ABCD$ не является грубым, но каждый четырех угольник $A'BCD$ такой, что $A'\neq A$ и $A'A\leq r$, является грубым. Найдите все возможные значения большего угла $ABCD$.



@темы: Планиметрия