Uriel_01.179
Задача 8-го класса по теме "Многоугольники" из пособия для углубленного изучения математики В.Ф. Бутузова и С.Б. Кадомцев ( ссылка на учебник www.studmed.ru/butuzov-vf-kadomcev-sv-i-dr-plan... )
"Может ли сумма расстояний от некоторой точки, лежащей внутри четырехугольника, до его вершин быть больше периметра этого четырехугольника ?
Ответ обоснуйте." Чертежи
Если взять случайную точку O внутри данного четырехугольника ABCD и провести расстояния от точки O до вершин A,B,C,D то данный четырехугольник разделится на 4 треугольника: ABO,BOD,COD,ACO( рис. 1). Из неравенства треугольников получаем, что AC AB/2+BD/2+CD/2+AC/2 ). Из выше сказанного следует , что произвольная точка внутренней области многоугольника не подойдет, значит нужна какая то особая точка внутр. области ABCD, но что это может быть за точка ? Я рассмотрел такую O, что расстояние между O и одной из вершин ( на рис. 2 это вершина D ) настолько мало, что им можно пренебречь( таким образом я хотел исключить из неравенства расстояние OD ), но в этом случае мы получим неравенства AB<AO+OB; AC
"Может ли сумма расстояний от некоторой точки, лежащей внутри четырехугольника, до его вершин быть больше периметра этого четырехугольника ?
Ответ обоснуйте." Чертежи

Если взять случайную точку O внутри данного четырехугольника ABCD и провести расстояния от точки O до вершин A,B,C,D то данный четырехугольник разделится на 4 треугольника: ABO,BOD,COD,ACO( рис. 1). Из неравенства треугольников получаем, что AC AB/2+BD/2+CD/2+AC/2 ). Из выше сказанного следует , что произвольная точка внутренней области многоугольника не подойдет, значит нужна какая то особая точка внутр. области ABCD, но что это может быть за точка ? Я рассмотрел такую O, что расстояние между O и одной из вершин ( на рис. 2 это вершина D ) настолько мало, что им можно пренебречь( таким образом я хотел исключить из неравенства расстояние OD ), но в этом случае мы получим неравенства AB<AO+OB; AC
Это упрощение. Можно взять и другой, с парой неравных длинных сторон и парой коротких. Его можно получить из треугольника, в котором высота длиннее стороны, к которой она проведена.