приветствую) помогите пожалуйста найти полный квадрат из уравнения x^2+10y=25, полученного из уравнения в полярной системе координат r=5/1+sin(фи), в полярной графиком является парабола, в декартовой тоже? вот еще, x^2+10y=25 - это допустимый вид уравнения в декартовой системе?
Но здесь не надо выделять полные квадраты
Вид кривой никак не может измениться при переходе к другой системе координат.
координат r=5/1+sin(фи)
Я спрашивала прок каноническое в декартовой
К нему вы и должны сводить
`y=-0,1x^2+2,5`
А как?
Но ведь начать надо было с чтения литературы методичек, я же не могу вам сюда переписывать учебники
Каноническое уравнение парабола имеет в канон. дек. системе: если начало координат совпадает с вершиной, а положительное направление оси абсцисс совпадает с осью
Каноническое должно быть или таким y^2=2px
или таким в крайнем случае x^2=2py
Для смещенной еще допускается запись
(y-yo)^2=2p(x-xo)
или (x-xo)^2=2p(y-yo)
У вас не так
Почитайте
Соболь Практикум по высшей математике - скачать можно Руководства по решению задач ("Решебники" по высшей математике)