Ещё один способ решения: `int(dx/(x^2+1)^2)=int(((1+x^2)-x^2)/(x^2+1)^2)dx=int(1/(x^2+1)dx)-int(x*x/(x^2+1)^2)dx` `int (1/(x^2+1)dx)=arctg(x)` `int(x*x/(x^2+1)^2)dx=-x/(2(x^2+1))+int(dx/(2(x^2+1))=-x/(2(x^2+1))+1/2arctg(x)` `U=x; dU=dx; dV=x/(x^2+1)^2dx; V=int((d(x^2+1)*1/2)/(x^2+1)^2)=1/2int(dt/t^2)=-1/(2(x^2+1))` `int(dx/(x^2+1)^2)=arctg(x)-(-x/(2(x^2+1))+1/2arctg(x))=arctg(x)+x/(2(x^2+1))-1/2arctg(x)=1/2arctg(x)+x/(2(x^2+1))+C`
А использовать интегрирование рац. функций?
`int dx/(x^2+1)^2=1/2(x/(x^2+1)^2+arctg(x))+C`
Для тех кто будет искать:
читать дальше
`int(dx/(x^2+1)^2)=int(((1+x^2)-x^2)/(x^2+1)^2)dx=int(1/(x^2+1)dx)-int(x*x/(x^2+1)^2)dx`
`int (1/(x^2+1)dx)=arctg(x)`
`int(x*x/(x^2+1)^2)dx=-x/(2(x^2+1))+int(dx/(2(x^2+1))=-x/(2(x^2+1))+1/2arctg(x)`
`U=x; dU=dx; dV=x/(x^2+1)^2dx; V=int((d(x^2+1)*1/2)/(x^2+1)^2)=1/2int(dt/t^2)=-1/(2(x^2+1))`
`int(dx/(x^2+1)^2)=arctg(x)-(-x/(2(x^2+1))+1/2arctg(x))=arctg(x)+x/(2(x^2+1))-1/2arctg(x)=1/2arctg(x)+x/(2(x^2+1))+C`