Попалась вот такая задача:
По данным 17 сотрудников фирмы, где работает 240 человек, среднемесячная заработная плата составила 340 у.е., при s=74 у.е. Какая минимальная сумма должна быть положена на счет фирмы, чтобы с вероятностью 0,98 гарантировать выдачу заработной платы всем сотрудникам?
Мои соображения:
1. Для того, чтобы найти нужную сумму, нужно среднемесячную зарплату всех сотрудников умножить на их количество. Количество известно, а вот среднемесячную зарплату надо искать...
2. Эту зарплату можно, я думаю, найти по формуле вероятности попадания нормально распределенной случайной величины X в заданный
интервал (α;β;)) . Но как найти этот интервал, и какую брать дисперсию???
Может, кто-нить кинет какую идею?

@темы: Теория вероятностей

Комментарии
09.02.2011 в 20:43

На свете есть всего 10 разновидностей людей. Те, которые понимают бинарный код, и те, кто не понимают
По идее, нужна минимальная сумма. Как я понимаю, это нижняя граница интервала. Тогда верхнюю можно принять за бесконечность.
Но это только идея, с такими задачами я не сталкивалась ни разу. Вдруг поможет?
09.02.2011 в 23:34

Мне кажется, задача составлена не корректно... При условии, что все остальные сотрудники получают зарплату, лежащую в пределах тех 17 человек, данные по которым даны в условии, задача решается очень просто. Надо только найти границу интервала, но не нижнюю, а верхнюю, приняв нижнюю за 0. Задача решена! Спасибо alba-longa за идею!
10.02.2011 в 00:23

На свете есть всего 10 разновидностей людей. Те, которые понимают бинарный код, и те, кто не понимают
31010
пожалуйста :) да, действительно, именно так она и решается. Теперь я вижу :)
Жалко, когда на понимание формулировки тратится больше сил, чем на само решение :)
10.02.2011 в 10:56

Мыслить последовательно, судить доказательно, опровергать неправильные выводы должен уметь всякий: физик и поэт, тракторист и химик. (с)Э. Кольман
31010
А что такое s=74 у.е. знаете?
10.02.2011 в 13:17

Heor s - это СКО, σ
10.02.2011 в 15:10

Мыслить последовательно, судить доказательно, опровергать неправильные выводы должен уметь всякий: физик и поэт, тракторист и химик. (с)Э. Кольман
31010
Верно. Таким образом, у Вас есть выборочное среднее и точность оценки.
И, по идее, Вы можете играться с доверительным интервалом.
10.02.2011 в 18:46

Heor Да. Я так и сделал. Спасибо. задача решена.