читать дальшеИ снова слова благодарности, помогавшим в решении математических задач на этой неделе.
В лидерах, как всегда, у нас Хранитель печати и Дилетант, но их догоняют yaru, Rain_man и Renaissance_Art. Внимательно следят и откликаются на события в сообществе также Dieter Zerium, Паломник Оптимизма, <Anor> , Cara, Polyav, кай. , Weather-wise, Fukkatsu, Solovei, Ыц (надеюсь, никого не пропустила?)
Мне очень приятно, что количество помогающих увеличилось по сравнению с прошлой неделей в 2 раза!
Чтобы пост был не совсем служебным, разбавляю его небольшой математической информацией.
Всем известно имя Григория Перельмана, решившего одну семи величайших математических загадок тысячелетия (гипотезу Пуанкаре) и занявшего в связи с этим 9 место в списке живых гениев (см. так же тут)
Далее чуть подробнее о других математических проблемах такого же ранга.
7 величайших математических загадок тысячелетия
читать дальшеВ течение тысячелетия математика породила 7 величайших загадок. 25 мая 2000 г. Институт математики Клея объявил о награде в $1 млн за решение каждой из этих главных математических проблем.
1. Уравнение Навье-Стокса о турбулентных потоках, 1822 [гидроаэродинамика]. Решения этих уравнений неизвестны [эмпирические степенные функции-многочлены?], и при этом даже неизвестно, как их решать. Необходимо показать, что решение существует и является достаточно гладкой функцией. Это позволит существенно изменить способы проведения гидро- и аэродинамических расчетов. [Интегрирование криволинейных тензоров как матрицы роторов и дивергенций?].
2. Гипотеза Римана, 1859 [теория чисел]. Считается, что распределение простых чисел среди натуральных не подчиняется никакой закономерности. Однако немецкий математик Риман высказал предположение, касающееся свойств последовательности простых чисел. Если гипотеза Римана будет доказана, то это приведет к революционному изменению наших знаний в области шифрования и к невиданному прорыву в области безопасности Интернета.
3. Гипотеза Пуанкаре, 1904 [топология или геометрия многомерных пространств]: всякое односвязное замкнутое трехмерное многообразие гомеоморфно трехмерной сфере [т.е. 4-мерного тороида быть не может, а наша Вселенная - трехмерная сфера?].
4. Гипотеза Ходжа, 1941 [алгебра, топология?]. В ХХ веке математики открыли мощный метод исследования формы сложных объектов - использование вместо самого объекта простых "кирпичиков", которые склеиваются между собой и образуют его подобие [разве это не есть "кубические интегралы"?]. Гипотеза Ходжа связана с некоторыми предположениями относительно свойств таких "кирпичиков" и объектов.
5. Теория Янга-Миллса [связь геометрии с квантовой физикой], 1954. Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения. Тем самым они нашли путь к объединению теорий электромагнитного, слабого и сильного взаимодействий. Из уравнений Янга-Миллса следовало существование частиц, которые действительно наблюдались в лабораториях, поэтому теория Янга - Миллса принята большинством физиков несмотря на то, что в рамках этой теории до сих пор не удается предсказывать массы элементарных частиц.
6. Гипотеза Берча и Свиннертона-Дайера, 1960 [алгебра и теория чисел?]. Связана с описанием множества решений некоторых алгебраических уравнений от нескольких переменных с целыми коэффициентами. Примером подобного уравнения является выражение x2 + y2 = z2. [Гипотеза Пьера Ферма - частный случай гипотезы Берча и Свиннертона-Дайера? А нельзя ли ее также доказать с помощью модальных функций?]
7. Гипотеза Кука, 1971 [математическая логика и кибернетика?]: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки? Эта проблема - также одна из нерешенных задач логики и информатики. Ее решение революционно изменило бы основы криптографии.
(взято отсюда chelas.org/forums.php?m=posts&q=209 и описание проблем достаточно субъективно)
Советую также почитать более подробную (и объективную!) статью Михаила Витебского lenta.ru/articles/2004/09/12/poincare/