`lim_{z -> 3 - 4i} |z| = 5`
Чтобы много не писать, важны 2 неравенства
`|z - (3 - 4i)| < \delta` `=>` `||z| - 5| < \epsilon`
Что-то здесь вообще не могу сообразить, с чего начать.
Есть 2 идеи, но не знаю, как их развить.
1 - геометрическая. Изобразить эти 2 неравенства в виде множества точек и попытаться получить что-то из этого. Но я не знаю, что представляет из себя второе неравенство.
2 - `z = x + iy`. В таком случае у меня получаются 2 неравенства
`|x - 3 + i(y + 4)| = sqrt((x - 3)^2 + (y + 4)^2) < \delta`
`|sqrt(x^2 + y^2) - 5| = sqrt(x^2 + y^2 + 25 - 10sqrt(x^2 + y^2)) < \epsilon`
Но здесь что-то уж очень сложное получается.
Вообще, логика в чем заключается? Нужно из оценки по дельта как-то "выуживать" полезную информацию и применять к оценке по эпсилон?