Всем привет. Опять доказательство теоремы, в котором хотелось бы разобраться. (Фихтенгольц, том 2, гл. 14, параграф 1, пункт 505)
Пусть существует по отдельности пределы
`lim_{y->y_0} f(x, y) = phi(x)`
`lim_{x->x_0} f(x, y) = psi(y)`
Если стремление `f(x, y)` к `phi(x)` равномерное, то существуют и равны повторные пределы
`lim_{x->x_0} lim_{y->y_0} f(x, y) = lim_{y->y_0} lim_{x->x_0} f(x, y)` (1)
Доказательство начинается с условия равномерного стремления `f(x, y)` к своей предельной функции
`\forall epsilon > 0` `\exists delta > 0:` `|y - y_0|,` `|y' - y_0| < delta => |f(x, y') - f(x, y)| < epsilon`
Переходя к пределу в последнем неравенстве, при `x -> x_0`
(вот здесь первый вопрос. Зачем это делается? Я думаю потому что в левой части равенства (1) `x` при внешнем пределе стремится к `x_0`)
получаем
`|psi(y') - psi(y)| <= epsilon` (почему знак неравенства не строгий?)
Здесь выполнено условие Больцано - Коши для `psi(y)` => `lim_{y -> y_0} psi(y) = A`.
(верно ли я понимаю, что мы, используя внешний предел в левой части равенства (1), получили то, что в правой части этого равенства стоит число?)
Ясно теперь, что `|y - y_0| < delta => ` `|phi(x) - f(x, y)| <= epsilon` и `|psi(y) - A| <= epsilon` (опять почему то не строгие знаки)
Сохраняя выбранное значение `y` найдем такое `delta' > 0:` `|x - x_0| < delta' =>` `|f(x, y) - psi(y)| < epsilon` (это просто использование определение предела?)
Из всех выше указанных неравенств следует, что
`|phi(x) - A| < 3*epsilon`
Ну это более менее понятно. Только, если честно, на какой-то подгон немного похоже. Очень удобная расстановка всех функций в модулях, хотя, безусловно, под модулем эти разности функций можно как угодно писать.
Из последнего неравенства следует
`lim_{x -> x_0} phi(x) = A`
Что и требовалось доказать.
Можете ли сказать, верно ли я все понимаю? Ну хотя бы без знаков неравенства