В Таиланде прошла очередная (57) международная олимпиада по математике. Российская команда выступила достаточно ровно, завоевав 6 серебряных медалей (к сожалению, золотых медалей нет). Всего принимало участие 577 человек (школьники).

Предлагаю несколько задач с этой олимпиады.

1. Конечное множество S точек на плоскости будем называть сбалансированным, если для любых различных точек A и B из множества S найдется точка C из множества S такая, что AC=BC. Множество S будем называть эксцентричным, если для любых трех различных точек A, B и C из множества S не существует точки P из множества S такой, что PA=PB=PC.
а) Докажите, что для любого целого `n >= 3` существует сбалансированное множество, состоящее из n точек.
б) Найдите все целые `n>=3`, для которых существует сбалансированное эксцентричное множество, состоящее из n точек.

2. Найдите все тройки (a,b,c) целых положительных чисел такие, что каждое из чисел ab-c, bc-a, ca-b является степенью двойки.

3. Пусть ABC остроугольный треугольник, в котором AB > AC. Пусть G – окружность, описанная около него, Н – его ортоцентр, а F – основание высоты, опущенной из вершины А. Пусть M – середина стороны BC. Пусть Q – точка на окружности G такая, что угол `HQA=90^@`, а K – точка на окружности G такая, что угол `HKQ=90^@`. Пусть точки A,B, C, K, Q различны и лежат на окружности G в указанном порядке.
Докажите, что окружности, описанные около треугольников KQH и FKM, касаются друг друга.

4. Пусть Okr – окружность, описанная около треугольника ABC, а точка O – ее центр. Окружность Gm с центром A пересекает отрезок BC в точках D и E так, что точки B,D, E, C все различны и лежат на прямой BC в указанном порядке. Пусть F и G – точки пересечения окружностей Okr и Gm, при этом точки A,F, B, C, G лежат на окружности Okr в указанном порядке. Пусть K – вторая точка пересечения окружности, описанной около треугольника BDF, и отрезка AB. Пусть L – вторая точка пересечения окружности, описанной около треугольника CGE, и отрезка CA.
Пусть прямые FK и GL различны и пересекаются в точке X. Докажите, что точка X лежит на прямой AO.

5. Пусть R – множество всех действительных чисел. Найдите все функции f : R -> R, удовлетворяющие равенству f(x+f(x+y))+f(xy)=x+f(x+y)+y∙f(x) для всех действительных чисел x и y.

Тексты задач взяты с сайта www.imo-official.org/