Иэн Стюарт Величайшие математические задачи / Перевод: Наталия Лисова - Альпина нон-фикшн, 2015, 468 с илл.
Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук. Эта книга - проводник в удивительный и загадочный мир чисел, теорем и гипотез, на передний край математической науки, которая новыми методами пытается разрешить задачи, поставленные перед ней тысячелетия назад.



Двенадцать задач на будущее (фрагмент)

Не хочу оставить у вас неверное впечатление, что большинство математических задач (за исключением нескольких особенно сложных) уже решено. Математические исследования напоминают изучение новооткрытого материка. По мере того как расширяется уже исследованная область, становится длиннее и граница между известным и неизвестным. Я не утверждаю, что чем больше математических закономерностей мы открываем, тем меньше знаем. Я говорю, что чем больше математических закономерностей мы открываем, тем лучше представляем себе объемы непознанного. Но непознанное изменяется со временем: одни задачи уходят в прошлое, на горизонте появляются другие. А область известного только расширяется, если, конечно, не говорить о случайно утерянных документах.

Чтобы дать вам некоторое представление о том, чего мы не знаем в настоящий момент (помимо тех проблем, о которых мы уже говорили), я приведу 12 нерешенных задач, которые уже некоторое время ставят в тупик математиков всего мира.
Я выбрал их таким образом, чтобы несложно было понять суть вопроса. Мы уже видели, что простота формулировок ничего не говорит о том, насколько легким или сложным может быть доказательство. Некоторые из этих проблем еще могут обернуться великими: это будет зависеть в основном не от ответа на вопрос, а от того, какие методы будут придуманы и применены для их решения и к чему соответствующие исследования
в конце концов приведут.

читать дальше