Биссектрисы треугольника `ABC` `A A_1`, `B B_1` и `C C_1` пересекаются в точке `O`. Известно, что `(AO) / (OA_1)=5/1`, `(CO) / (OC_1)=5/4`. Точка `H` – пересечение отрезков `A_1 C_1` и `B B_1`. Найти `(C_1H) / (HA_1)`
(ответ: 3/2).
читать дальше
Не могу понять, с чего начать решать. По свойству биссектрисы треугольника,
`(BA_1)/(CA_1)=(AB)/(AC)`.
Аналогично для остальных двух биссектрис.
Но в задаче даны именно "внутренние отношения", т.е., как мне кажется, нужно работать с треугольниками `AOC` и `A_1 O C_1`. Мне кажется, что эти треугольники подобны, но доказать это я не могу.
Прошу помощи.