Неотрицательные действительные числа `a, b, c` удовлетворяют равенству `a^2 + b^2 + c^2 = 1`. Докажите, что `{a}/{b^2 + 1} + {b}/{c^2 + 1} + {c}/{a^2 + 1} \geq {3}/{4}*(a\sqrt {a} + b\sqrt {b} + c\sqrt {c})^2`. [изображение]