| Всё, что видим мы, — видимость только одна. Далеко от поверхности мира до дна. Полагай несущественным явное в мире, Ибо тайная сущность вещей — не видна.
Молчанье — щит от многих бед, А болтовня всегда во вред. Язык у человека мал, Но сколько жизней он сломал. Омар Хайям
|
Наверное, немногие знают, что Омар Хайям — не только великий поэт и философ. Кроме всего этого, он выдающийся математик.
Запись не приурочена ко дню рождения, хоть даты его жизни оказались известны. Он умер 4 декабря. Будем считать это формальным поводом.
Википедия
Гиясаддин Абу-ль-Фатх Омар ибн Ибрахим аль-Хайям Нишапури (перс. غیاث الدین ابوالفتح عمر بن ابراهیم خیام نیشابورﻯ, 18 мая 1048, Нишапур — 4 декабря 1131, там же) — персидский поэт, философ, математик, астроном, астролог.
Внёс вклад в алгебру построением классификации кубических уравнений и их решением с помощью конических сечений. В Иране Омар Хайям известен созданием самого точного из реально используемых календарей. Учениками Хайяма были такие учёные, как ал-Асфизари и ал-Хазини.
Через 60 лет после смерти Хайяма ему стали приписывать четверостишия (рубаи), которые в XIX веке принесли ему всемирную славу. Вопрос о принадлежности этих рубаи реальному Омару Хайяму остаётся открытым.
Биографиячитать дальшеУроженец города Нишапура в Хорасане (ныне иранская провинция Хорасан-Резави). Омар был сыном палаточника, также у него была младшая сестра Аиша. В 8 лет глубоко занимался математикой, астрономией, философией. В 12 лет Омар стал учеником Нишапурского медресе. Он блестяще закончил курс по мусульманскому праву и медицине, получив квалификацию хакима, то есть врача. Но медицинская практика мало интересовала Омара. Он изучал сочинения известного математика и астронома Сабита ибн Курры, труды греческих математиков.
Детство Хайяма пришлось на жестокий период сельджукского завоевания Центральной Азии. Погибло множество людей, в том числе значительная часть учёных. Позже в предисловии к своей «Алгебре» Хайям напишет горькие слова:Мы были свидетелями гибели учёных, от которых осталась небольшая многострадальная кучка людей. Суровость судьбы в эти времена препятствует им всецело отдаться совершенствованию и углублению своей науки. Большая часть тех, которые в настоящее время имеют вид учёных, одевают истину ложью, не выходя в науке за пределы подделки и лицемерия. И если они встречают человека, отличающегося тем, что он ищет истину и любит правду, старается отвергнуть ложь и лицемерие и отказаться от хвастовства и обмана, они делают его предметом своего презрения и насмешек.


Картина «На могиле Омара Хайяма»
В возрасте шестнадцати лет Хайям пережил первую в своей жизни утрату: во время эпидемии умер его отец, а потом и мать. Омар продал отцовский дом и мастерскую и отправился в Самарканд. В то время это был признанный на Востоке научный и культурный центр. В Самарканде Хайям становится вначале учеником одного из медресе, но после нескольких выступлений на диспутах он настолько поразил всех своей учёностью, что его сразу же сделали наставником.
Как и другие крупные учёные того времени, Омар не задерживался подолгу в каком-то городе. Всего через четыре года он покинул Самарканд и переехал в Бухару, где начал работать в хранилищах книг. За десять лет, что учёный прожил в Бухаре, он написал четыре фундаментальных трактата по математике.
В 1074 году его пригласили в Исфахан, центр государства Санджаров, ко двору сельджукского султана Мелик-шаха I. По инициативе и при покровительстве главного шахского визиря Низам аль-Мулька Омар становится духовным наставником султана. Через два года Мелик-шах назначил его руководителем дворцовой обсерватории, одной из крупнейших в мире. Работая на этой должности, Омар Хайям не только продолжал занятия математикой, но и стал известным астрономом. С группой учёных он разработал солнечный календарь, более точный, чем григорианский. Составил «Маликшахские астрономические таблицы», включавшие небольшой звездный каталог[7]. Здесь же написал «Комментарии к трудностям во введениях книги Евклида» (1077 г.) из трёх книг; во второй и третьей книгах исследовал теорию отношений и учение о числе. Однако в 1092 году, со смертью покровительствовавшего ему султана Мелик-шаха и визиря Низам ал-Мулька, исфаханский период его жизни заканчивается. Обвинённый в безбожном вольнодумстве, поэт вынужден покинуть сельджукскую столицу.
О последних часах жизни Хайяма известно со слов его младшего современника — Бейхаки, ссылающегося на слова зятя поэта.
Однажды во время чтения «Книги об исцелении» Абу Али ибн Сины Хайям почувствовал приближение смерти (а было тогда ему уже за восемьдесят). Остановился он в чтении на разделе, посвященном труднейшему метафизическому вопросу и озаглавленному «Единое во множественном», заложил между листов золотую зубочистку, которую держал в руке, и закрыл фолиант. Затем он позвал своих близких и учеников, составил завещание и после этого уже не принимал ни пищи, ни питья. Исполнив молитву на сон грядущий, он положил земной поклон и, стоя на коленях, произнёс: «Боже! По мере своих сил я старался познать Тебя. Прости меня! Поскольку я познал Тебя, постольку я к Тебе приблизился». С этими словами на устах Хайям и умер.
МатематикаХайяму принадлежит «Трактат о доказательствах задач алгебры и алмукабалы», в котором даётся классификация уравнений и излагается решение уравнений 1-й, 2-й и 3-й степени. В первых главах трактата Хайям излагает алгебраический метод решения квадратных уравнений, описанный ещё ал-Хорезми. В следующих главах он развивает геометрический метод решения кубических уравнений, восходящий к Архимеду: корни данных уравнений в этом методе определялись как общие точки пересечения двух подходящих конических сечений. Хайям привёл обоснование этого метода, классификацию типов уравнений, алгоритм выбора типа конического сечения, оценку числа (положительных) корней и их величины. К сожалению, Хайям не заметил, что кубическое уравнение может иметь три положительных действительных корня. До явных алгебраических формул Кардано Хайяму дойти не удалось, но он высказал надежду, что явное решение будет найдено в будущем.
Во введении к данному трактату Омар Хайям даёт первое дошедшее до нас определение алгебры как науки, утверждая: алгебра — это наука об определении неизвестных величин, состоящих в некоторых отношениях с величинами известными, причём такое определение осуществляется с помощью составления и решения уравнений.
В 1077 г. Хайям закончил работу над важным математическим трудом — «Комментарии к трудностям во введениях книги Евклида». Трактат состоял из трёх книг; первая содержала оригинальную теорию параллельных прямых, вторая и третья посвящены усовершенствованию теории отношений и пропорций. В первой книге Хайям пытается доказать V постулат Евклида и заменяет его более простым и очевидным эквивалентом: Две сходящиеся прямые должны пересечься; по сути, в ходе этих попыток Омар Хайям доказал первые теоремы геометрий Лобачевского и Римана.


Гробница Омара Хайяма в Нишапуре, Иран
Далее Хайям рассматривает в своём трактате иррациональные числа как вполне законные, определяя равенство двух отношений как последовательное равенство всех подходящих частных в алгоритме Евклида. Евклидову теорию пропорций он заменил численной теорией.
При этом в третьей книге «Комментариев», посвящённой составлению (то есть умножению) отношений, Хайям по-новому трактует связь понятий отношения и числа. Рассматривая отношение двух непрерывных геометрических величин A и B, он рассуждает так: «Выберем единицу и сделаем её отношение к величине G равным отношению A к B, и будем смотреть на величину G как на линию, поверхность, тело или время; но будем смотреть на неё как на величину, отвлечённую разумом от всего этого и принадлежащую к числам, но не к числам абсолютным и настоящим, так как отношение A к B часто может не быть числовым… Следует, чтобы ты знал, что эта единица является делимой и величина G, являющаяся произвольной величиной, рассматривается как число в указанном выше смысле». Высказавшись за введение в математику делимой единицы и нового рода чисел, Хайям теоретически обосновал расширение понятия числа до положительного действительного числа.
Ещё одна математическая работа Хайяма — «Об искусстве определения количества золота и серебра в состоящем из них теле» — посвящена классической задаче на смешение, впервые решённой ещё Архимедом.
Астрономиячитать дальшеХайям возглавлял группу астрономов Исфахана, которая в правление сельджукского султана Джалал ад-Дина Малик-шаха разработала принципиально новый солнечный календарь. Он был принят официально в 1079 г. Основным предназначением этого календаря была как можно более строгая привязка Новруза (то есть начала года) к весеннему равноденствию, понимаемому как вхождение солнца в зодиакальное созвездие Овна. Так, 1 фарвардина (Новруз) 468 солнечного года хиджры, в которое был принят календарь, соответствовало пятнице, 9 рамазана 417 лунного года хиджры, и 19 фарвардина 448 года эры Йездигерда (15 марта 1079 г.). Для отличия от зороастрийского солнечного года, называвшегося «древним» или «персидским» , новый календарь стали называть по имени султана — «Джалали» или «Малеки». Количество дней в месяцах календаря «Джалали» варьировало в зависимости от сроков вступления солнца в тот или иной зодиакальный знак и могло колебаться от 29 до 32 дней. Были предложены и новые названия месяцев, а также дней каждого месяца по образцу зороастрийского календаря. Однако они не прижились, и месяцы стали именоваться в общем случае именем соответствующего знака зодиака.
С чисто астрономической точки зрения календарь «Джалали» был точнее, чем древнеримский юлианский календарь, применявшийся в современной Хайяму Европе, и точнее, чем позднейший европейский григорианский календарь. Вместо цикла «1 високосный на 4 года» (юлианский календарь) или «97 високосных на 400 лет» (григорианский календарь) Хайямом принято было соотношение «8 високосных на 33 года». Другими словами, из каждых 33-х лет 8 были високосными и 25 обычными. Этот календарь точнее всех других известных соответствует году весенних равноденствий. Проект Омара Хайяма был утверждён и лёг в основу иранского календаря, который вплоть до настоящего времени действует в Иране в качестве официального с 1079 года.
Дураки мудрецом почитают меня,
Видит Бог: я не тот, кем считают меня.
О себе и о мире я знаю не больше
Тех глупцов, что усердно читают меня.
Еще портреты
читать дальшеЕще рубаи
читать дальше
Некто мудрый внушал задремавшему мне:
«Просыпайся! Счастливым не станешь во сне.
Брось ты это занятье, подобное смерти,
После смерти, Хайям, отоспишься вполне!»
Тот, кто с юности верует в собственный ум,
Стал в погоне за истиной сух и угрюм.
Притязающий с детства на знание жизни,
Виноградом не став, превратился в изюм.
Так как истина вечно уходит из рук
Не пытайся понять непонятное, друг!
Чашу в руки бери, оставайся невеждой
Нету смысла, поверь, в изученьи наук!
Ссылки1. Сайт, посвященный Омару Хайяму. Вот ссылка на страницу с его трактатами:
tao-dao.ru/trakt.htmlСреди них и трактат
О доказательствах задач алгебры и алмукабалы и многие другие.
2. Статья в журнале «Дилетант»
Омар Хайям великий математик и астроном древнего Востока3.
Биография Омара Хайяма 4. Всё время цитируемый мной сайт
math4school.ru5. Сайт
Математическая школа6. Книга
Звезды Востока, точнее, заключительная часть
7. Ну и для ровного счета на кулинарном портале нашелся рецепт
«Говядина от Хайяма». Со всякими притчами в придачу ))
Вот это да! Здорово!
Amicus Plato, спасибо)))
старый добрый Тигрррь, ага, меня тоже этот пассаж сразил! Подняться до таких высот абстракции — это очень сильно.