Прочитайте, как обстоят дела у сайта Дневников и как вы можете помочь!
×
  • ↓
  • ↑
  • ⇑
 
Записи пользователя: wpoms. (список заголовков)
20:49 

Угол - это место, где я провёл часть своего детства

wpoms.
Step by step ...


Точка $D$ на стороне $BC$ остроугольного треугольника $ABC$ выбрана так, что $AD = AC.$ Пусть $P$ и $Q$ будут, соответственно, основаниями перпендикуляров, опущенных из $C$ и $D$ на сторону $AB.$ Известно, что $AP^2 + 3BP^2 = AQ^2 + 3BQ^2$.
Найдите величину угла $ABC.$



@темы: Планиметрия

20:23 

Level up

wpoms.
Step by step ...


Юлиан пишет в клетки доски размером $1\times100$ все целые числа от 1 до 100 включительно в некотором порядке, без повторений. Из каждых трех последовательных клеток он отмечает клетку, в которой записано среднее по величине число из трёх чисел, записанных в этих клетках. Например, если в трёх клетках записаны числа 7, 99 и 22, то он отметит клетку с числом 22. Пусть $S$ будет суммой чисел в отмеченных клетках. Найдите минимальное значение, которое может принимать $S.$
Пояснение. Каждое число из отмеченных клеток суммируется однократно, но клетки могут отмечаться более одного раза.



@темы: Олимпиадные задачи

19:15 

Игра

wpoms.
Step by step ...


Алекс и Биби играют в игру. Алекс выбирает натуральное число $k$ меньшее или равное 1000. Затем Биби составляет коллекцию $B,$ содержащую более $k$ целых чисел из диапазона от 0 до 1000 включительно, числа в коллекции могут повторятся. После этого Алекс многократно применяет к $B$ такую операцию: он выбирает $k$ чисел из $B$ и меняет их. Каждое выбранное число $b$ он заменяет на число $b+1,$ если $b$ меньше $1000,$ и заменяет $b$ на 0, если $b = 1000.$ Алекс выигрывает, если после выполнения нескольких операций все числа в коллекции $B$ станут равными 0, если он не сможет добиться этого результата, то выиграет Биби. Найдите все $k$ такие, что Алекс сможет гарантированно выиграть, вне зависимости от выбора Биби чисел для коллекции.



@темы: Олимпиадные задачи

04:12 

Турнир городов. Осень. Сложный вариант

wpoms.
Step by step ...
Турнир городов. Осень. Сложный вариант

8-9 классы

Задача 1.
Имеется железная гиря в 6 кг, сахар и невесомые пакеты в неограниченном количестве, а также нестандартные весы с двумя чашами: весы находятся в равновесии, если грузы на левой и правой чашах относятся как 3:4. За одно взвешивание можно положить на весы любые уже имеющиеся грузы и добавить на одну из чаш пакет с таким количеством сахара, чтобы чаши уравновесились (такие пакеты с сахаром можно использовать при дальнейших взвешиваниях). Удастся ли отмерить 1 кг сахара?

Задача 2.
Даны две монеты радиуса 1 см, две монеты радиуса 2 см и две монеты радиуса 3 см. Можно положить две из них на стол так, чтобы они касались друг друга, и добавлять монеты по одной так, чтобы очередная касалась хотя бы двух уже лежащих. Новую монету нельзя класть на старую. Можно ли положить несколько монет так, чтобы центры каких-то трёх монет оказались на одной прямой?

читать дальше

@темы: Порешаем?!

20:05 

Минимальная сумма цифр

wpoms.
Step by step ...


Рассмотрим сто чисел - $199,$ $199^2,$ $199^3,$ $199^4,$ ..., $199^{100}.$ Для каждого из них вычисляется сумма цифр.
Определите минимальное из 100 вычисленных значений.



@темы: Теория чисел

20:58 

На доске

wpoms.
Step by step ...


В каждую клетку доски $17 \times 17$ нужно вписать одно из натуральных чисел от 1 до $n$ включительно так, чтобы все эти числа были использованы (они могут повторяться).
Если в одном ряду есть две клетки $A$ и $B$ с одним и тем же числом $k$ и $A$ расположена левее $B,$ то в одной колонке с клеткой $A$ и выше неё не должно быть клеток с числом $k.$
Определите минимальное значение $n$ и покажите доску с записанными числами, удовлетворяющую этим условиям.



@темы: Комбинаторика

23:41 

Не все то золото, что блестит

wpoms.
Step by step ...
20:09 

Про треугольник

wpoms.
Step by step ...


Пусть $ABC$ --- прямоугольный треугольник и $C = 90^\circ.$ Точки $D$ и $E$ выбраны на гипотенузе AB так, что $AD = AC$ и $BE = BC.$ Точки $P$ и $Q$ лежат на $AC$ и $BC$ соответственно, при этом, $AP = AE$ и $BQ = BD.$ Пусть $M$ --- середина отрезка $PQ.$
Покажите, что $M$ --- точка пересечения биссектрис треугольника $ABC$ и найдите величину угла $AMB.$



@темы: Планиметрия

06:54 

Олимпиада стран Залива

wpoms.
Step by step ...
Олимпиада стран Залива



Олимпиада стран Залива (Gulf Mathematical Olympiad) проводится с 1433 года. В ней принимают участие сборные команды Бахрейна, Кувейта, Омана, Катара, Саудовской Аравии и Объединённых Арабских Эмиратов. Задачи для олимпиады составляют гастарбайтеры из Европы под руководством Д. Смита (Англия).



@темы: Олимпиадные задачи

19:34 

Турнир городов. Осень. Базовый вариант

wpoms.
Step by step ...
Турнир городов. Осень. Базовый вариант

8-9 классы

Задача 1
Имеется 5 ненулевых чисел. Для каждых двух из них вычислены их сумма и произведение. Оказалось, что пять сумм положительны и пять сумм отрицательны. Сколько произведений положительны и сколько – отрицательны?

Задача 2
Существуют ли такие 99 последовательных натуральных чисел, что наименьшее из них делится на 100, следующее делится на 99, третье – на 98, … , последнее делится на 2?

читать дальше

@темы: Порешаем?!

11:29 

Винни-Пух сел на диету

wpoms.
Step by step ...


5525.
Собралось несколько друзей, некоторые из которых всегда говорят правду, а остальные всегда лгут.
Докажите, что вместе они могут проскандировать одну фразу, по которой посторонний сможет определить число лгущих.
%М.А. Дидин (Москва)

5526.
Винни-Пух сел на диету и каждый день ест на две банки варенья меньше и на одну банку мёда больше, чем вчера.
Всего за время диеты он съел 484 банки варенья и 275 банок мёда. Сколько дней длилась диета?
%Е.В. Бакаев (Москва)

читать дальше



@темы: Порешаем?!

13:36 

Про коробки

wpoms.
Step by step ...


Имеются 100 бесконечно вместительных коробок, в каждой из которых лежит по одной фишке. Бруно может добавить в каждую коробку так много фишек, сколько пожелает. После этого начинает выполняться последовательность шагов.
На шаге 1 в каждую коробку добавляется по одной фишке.
На шаге 2 фишка добавляется в те коробки, в которых содержится чётное количество фишек.
На шаге 3 фишка добавляется в те коробки, количество фишек в которых делится на 3.
На шаге 4 фишка добавляется в те коробки, количество фишек в которых делится на 4.
И так далее.
Целью Бруно было добиться того, чтобы на каждом шаге можно было найти две коробки с разным количеством фишек.
Определите, может ли Бруно достичь своей цели при каком-либо добавлении фишек до начала выполнения описанной последовательности шагов.




@темы: Дискретная математика

20:24 

Баскетбол

wpoms.
Step by step ...



В баскетболе коэффициентом эффективности игрока называют отношение заброшенных со штрафных мячей к общему количеству выполненных штрафных бросков. В конце первой половины игры коэффициент эффективности Метью был меньше 3/4, в в конце игры больше 3/4. Можно ли с уверенностью утверждать, что в некоторый момент времени его коэффициент эффективности был равен точно 3/4? Ответьте на тот же вопрос для 3/5 вместо 3/4.




@темы: Теория чисел

11:12 

Альтернативные способы решения задач

wpoms.
Step by step ...
1. Кушнир, И. Альтернативные способы решения задач (Геометрия). — К.: Факт, 2006. - 368 с.

Стр. 42.

12. Окружность. Первые задачи

Рассмотрим несколько задач, интерес к которым «подогревается» возможностью решить их двумя и более способами. Лично у меня вызывает особый интерес первая задача.

Привыкнув к ней как к одной из предлагаемых в начале изучения курса планиметрии, я не подозревал о существовании второго способа, пока его не предложил ученик, почему-то не сумевший решить задачу первым, более легким способом. Бывает...

Задача 1. Доказать, что общая хорда двух пересекающихся окружностей перпендикулярна линии центров.

Первый способ
Пусть О1 и O2 — центры двух пересекающихся окружностей с общей хордой MN. Поскольку треугольники О1МO2 и О1NO2 равны, то /_MO1O2 = /_NO1O2, а значит, MN_|_O1O2 как биссектриса равнобедренного треугольника MO1N.

Второй способ
Проведем диаметры MA и MB. Поскольку /_MNA = /_MNB = 90°, то АВ — прямая. В треугольнике МАВ O1O2 — средняя линия, параллельная стороне АВ. Поскольку АВ _|_ MN, то O1O2 _|_ MN.

P.S. Предположу, что можно предложить ещё несколько вариантов доказательства.

2. Эйнштейну приписывается (Steven Strogatz, Einstein’s First Proof) следующее доказательство теоремы Пифагора.

Шаг 1. Проведём высоту из вершины прямого угла.

Каким могло бы быть продолжение? :)

@темы: Порешаем?!

09:26 

Малый мехмат — школе

wpoms.
Step by step ...
Малый мехмат — школе

изображение

Методические разработки, созданные ведущими преподавателями Малого мехмата для проведения математических кружков в общеобразовательных школах.

Линия 1:

для 5 класса (30 занятий), cоставители Д. А. Коробицын и Г. К. Жуков
для 6 класса (30 занятий), составители Д. А. Коробицын и Г. К. Жуков
для 7 класса (30 занятий), составители Е. А. Асташов, Я. А. Верёвкин, А. А. Дейч, С. М. Саулин, А. В. Феклина
для 8–9 классов: 1-е полугодие (15 занятий), составители Е. А. Асташов и Д. А. Удимов, 2-е полугодие (15 занятий), составители Е. А. Асташов, Я. А. Верёвкин, О. А. Манжина и Д. А. Удимов

Линия 2:

для 5–6 классов: 1-е полугодие (15 занятий), составители А. Л. Канунников, С. Л. Кузнецов и И. И. Осипов, 2-е полугодие (15 занятий), составитель И. И. Осипов
для 6–7 классов: 1-я часть, составители Н. П. Стрелкова и С. Л. Кузнецов, 2-я часть, составитель С. Л. Кузнецов
для 8 классов (15 занятий), составитель А. Л. Канунников

mmmf.msu.ru/for_schools/

@темы: Литература, Методические материалы

09:03 

Иранская геометрическая олимпиада

wpoms.
Step by step ...
Иранская геометрическая олимпиада

В сентябре этого года проводилась четвёртая Иранская геометрическая олимпиада.



Задачи разбиты на три уровня сложности: 7–8 классы (Elementary Level), 9–10 классы (Intermediate Level) и 11–12 классы (Advanced Level).
В нашей стране олимпиаду писали в пяти городах.

Сайт олимпиады: igo-official.ir

@темы: Планиметрия, Олимпиадные задачи

06:23 

Пособия для подготовки к ЕГЭ 2018

wpoms.
Step by step ...
Пособия для подготовки к ЕГЭ 2018

Гордин Р.К. ЕГЭ 2018. Математика. Геометрия. Стереометрия. Задача 14 (профильный уровень) / Под ред. И. В. Ященко. — М.: МЦНМО, 2018.—128 с.

Добавлено Приложение 2. Задачи ЕГЭ 2017. С задачами можно познакомиться в разделе ЕГЭ на замечательном сайте ИПС «Задачи по геометрии».

Гордин Р.К. ЕГЭ 2018. Математика. Геометрия. Планиметрия. Задача 16 (профильный уровень) / Под ред. И. В. Ященко. — М.: МЦНМО, 2018.—240 с.

Приложение 1. Избранные задачи тренировочных и экзаменационных работ пополнилось задачами ЕГЭ 2017. С задачами можно познакомиться в разделе ЕГЭ на замечательном сайте ИПС «Задачи по геометрии».

Шестаков С. А. ЕГЭ 2018. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень).—М.: МЦНМО, 2018.—352 с.
Шестаков С. А. ЕГЭ 2018. Математика. Задачи с экономическим содержанием. Задача 17 (профильный уровень) / Под ред. И. В. Ященко.—М.: МЦНМО, 2018.—208 с.

Скорее всего, это стереотипные издания.

P.S. Не забывайте заглядывать на сайт www.alleng.ru.

@темы: ЕГЭ, Литература

06:05 

Математический конкурс в ЮУрГУ

wpoms.
Step by step ...
Математический конкурс в ЮУрГУ

Сайт: vk.com/konkursinsusu
Организатор: А. Эвнин

Задания конкурса № 51

Задача 301. [Нечётные цифры] Вася умножил натуральное число п > 1 на 999 999 997. В полученном числе все цифры оказались нечётными. Найдите наименьшее возможное значение п.

Задача 302. [101 корова] B cтаде 101 корова. Если увести любую одну, то оставшихся можно разделить на 5 групп по 20 коров в каждой, так что суммарный вес коров по всем группам один и тот же. Известно, что каждая корова весит целое число килограммов. Докажите, что все коровы весят одинаково.

Задача 303. [Произведение косинусов] Пусть n — натуральное число. Докажите, что
cos(pi/(2n+1)) * cos((2pi)/(2n+1)) * cos((3pi)/(2n+1)) * ... * cos((n pi)/(2n+1)) = 1/2^n.

Задача 304. [Найдите угол] В выпуклом четырёхугольнике ABCD угол A=30 градусов; BC+CD+DB=AC. Найдите угол C.

Задача 305. [Циклическое неравенство] Для положительных чисел a_1, a_2, ..., a_n (n>3) докажите неравенство
1 < (a_1)/(a_n+a_1+a_2) + (a_2)/(a_1+a_2+a_3) + ... + (a_n)/(a_{n-1}+a_n+a_1) < n-2.

Задача 306. [Оцените многочлен] Многочлен второй степени f(x) на концах отрезка [a;b] и в его середине принимает значения, по модулю не большие 1. Каково наибольшее возможное значение f(x) на этом отрезке?

Условие в формате pdf смотрите на указанном выше сайте.

@темы: Головоломки и занимательные задачи, Олимпиадные задачи

21:15 

Уравнение

wpoms.
Step by step ...


Найдите все пары `(a, b)` неотрицательных целых числе таких, что `2017^a = b^6 - 32b + 1`.



@темы: Показательные уравнения (неравенства)

18:00 

Игра

wpoms.
Step by step ...


Анна и Берта играют в игру, в которой нужно снимать камешки со стола.
Анна ходит первой. Пусть перед очередным ходом на столе лежат `n \geq 1` камешков, тогда делающий ход игрок снимает со стола `k` камешков, где `k \geq 1` либо четное и `k \leq \frac{n}{2}`, либо нечетное и `\frac{n}{2} \leq k \leq n`. Игрок выигрывает, если своим ходом она снимает со стола последний камень.
Найдите наименьшее `N \geq 100000` такое, что Берта может одержать победу, если на столе лежат ровно `N` камешков в начале игры.



@темы: Дискретная математика

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная