• ↓
  • ↑
  • ⇑
 
Записи с темой: комбинаторика (список заголовков)
18:11 

wpoms.
Step by step ...


Ник хочет написать вокруг окружности 100 целых чисел от 1 до 100 в некотором порядке без повторений так, чтобы они удовлетворяли условию: сумма 100 расстояний при движении по часовой стрелке между каждым числом и следующим за ним в направлении обхода равна 198. Определите, сколькими способами Ник может упорядочить эти 100 чисел для достижения своей цели?
Пояснение: Расстоянием между числами $a$ и $b$ называется $|a-b|.$



@темы: Комбинаторика

11:13 

Биномиальные коэффициенты

Прошу подсказать,

Дано выражение

7С20 - 8С20 + 9С20 - 10С20 +....+19С20 - 20С20

Запись не очень нормальная. Имеются ввиду биномиальные коэффициенты из комбинаторики.

Интуитивно чувствую, что надо применить вторую формулу
mathemlib.ru/mathenc/item/f00/s00/e0000504/pic/490_07.jpg

т.к. знаки чередующиеся.

Я пришел к тому, что данное выражение равно
0C20 - 1C20 + 2C20 - 3C20 + 4C20 - 5C20 + 6C20

А дальше тупик(

@темы: Комбинаторика

20:58 

На доске

wpoms.
Step by step ...


В каждую клетку доски $17 \times 17$ нужно вписать одно из натуральных чисел от 1 до $n$ включительно так, чтобы все эти числа были использованы (они могут повторяться).
Если в одном ряду есть две клетки $A$ и $B$ с одним и тем же числом $k$ и $A$ расположена левее $B,$ то в одной колонке с клеткой $A$ и выше неё не должно быть клеток с числом $k.$
Определите минимальное значение $n$ и покажите доску с записанными числами, удовлетворяющую этим условиям.



@темы: Комбинаторика

11:21 

Задача по комбинаторике

Добрый день!
Подскажите, пожалуйста, верно ли решена задача? Что-то я сомневаюсь((
читать дальше

@темы: Комбинаторика

20:58 

Игра по правилам

wpoms.
Step by step ...


Компания из `n` игроков играет в настольную игру по следующим правилам.
а) В каждом раунде играют ровно `3` игрока
б) Игра заканчивается через `n` раундов
в) Каждая пара игроков играет вместе по крайней мере в одном раунде.
Найдите наибольшее возможное значение `n`.



@темы: Комбинаторика

19:29 

На окружности

wpoms.
Step by step ...


На окружности выбраны `2*n` различных точек. Числа от `1` до `2*n` случайным образом распределены по всем этим точкам. Каждая точка соединена отрезком ровно с одной другой точкой так, что проведенные отрезки не пересекаются. Отрезку, соединяющему числа `a` и `b`, сопоставляется значение `|a - b|`. Покажите, что возможно соединить точки описанным выше способом так, чтобы сумма значений, сопоставленных всем отрезкам, была равна `n^2`.



@темы: Комбинаторика, Теория чисел

20:33 

Комбинаторика

skifalan
Из множества чисел `{1, 2, 3,..., 16}` случайно последовательно без возвращения выбирают два числа – `x` и `y`. Какова вероятность того, что тройка чисел `{x, y, 12}` является сторонами прямоугольного треугольника?

Проверьте пожалуйста моё решение.

Мои мысли:
читать дальше

@темы: Теория вероятностей, Комбинаторика

00:27 

Выбор комнат

wpoms.
Step by step ...


В гостинице имеется десять номеров вдоль каждой стороны коридора. Капитан олимпийской команды хочет забронировать семь комнат так, что никакие два зарезервированные номера на одной стороне коридора не были смежными. Сколькими способами это можно сделать?



@темы: Комбинаторика

17:41 

Иванов, Петров, Сидоров - Близнецы? - Нет. Однофамильцы

wpoms.
Step by step ...


В классе, в котором учатся `14` мальчиков, провели опрос. Каждого из мальчиков попросили ответить на два вопроса: у скольких одноклассников такое же имя и у скольких одноклассников такая же фамилия. В ответ были получены числа `0, 1, 2, 3, 4, 5` и `6`. Докажите, что в классе есть два мальчика с совпадающими именем и фамилией.



@темы: Комбинаторика

11:31 

Позвони мне, позвони

wpoms.
Step by step ...


Девятизначный телефонный номер abcdefghi является легко запоминаемым если последовательность его первых четырех цифр abcd повторяется в последних пяти цифрах efghi. Сколько всего существует легко запоминаемых телефонных номеров?



@темы: Комбинаторика

22:44 

ЕГЭ

24. Дан куб с ребром 1. Найти угол phi между AB_1 и MC, где M - середина ребра BB_1.
25. Все ребра правильной призмы AB...F_1 равны 1. Найдите косинус угла между прямой AB_1 И BD.
26. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите косинус угла между прямой AB и плоскостью (SAD).
27. В правильной треугольной пирамиде SABC с основанием ABC известны ребра: AB=12sqrt(3), SC=13. Найдите угол, образованный плоскостью основания и прямой, проходящей через середины ребер AS и BC.
28. В прямоугольном параллелепипеде ABCD...D_1 известны ребра AB=35, AD=12, CC_1=21. Найдите угол между плоскостями ABC и A_1DB.
29. Диаметр окружности основания цилиндра равен 26, образующая цилиндра равна 21. Плоскость пересекает его основания по хордам длины 24 и 10. Найдите угол между этой плоскостью и плоскостью основания цилиндра.
30. В правильной шестиугольной призме AB..F_1 стороны основания равны 4, а высота равна 3. Найдите расстояние от вершины B до ребра A_1F_1.
31. Высота SO правильной четырехугольной пирамиды равна 1, а сторона основания ABCD равна sqrt(5). Найти расстояние от точки A о грани (SBC).
32. Саша выбирает случайное трехзначное число. Найдите вероятность того, что оно делится на 51.
33. Найдите наибольшее значение функции y=ln(x+5)^5-5x на отрезке [-4.5;0].
34. Имеются 2 куска сплава меди и цинка с процентным содержанием меди 42% и 65% соответственно. В каком отношении надо взять эти сплавы, чтобы, переплавив, получить сплав, содержащий 50% меди?



24 задачу я попробовала решить через систему координат, но не использовала параллельный перенос и получила arccos=1/корень из 10
Но, если с использованием параллельного переноса получится что arccos=1/2.... Но там угол на взаимно перпендикулярных плоскостях.... А значит должно получиться 90^@....

@темы: ЕГЭ, Комбинаторика, Исследование функций

20:16 

Сгорая плачут свечи

wpoms.
Step by step ...


В часовне На костях (Capela dos Ossos) было несколько свечей одинакового размера. В первый день зажгли на один час одну свечу. На второй день на один час зажгли две свечи, на третий день зажгли три свечи на один час, и так далее, до последнего дня, в который зажгли все свечи на один час. В конце концов, все свечи полностью сгорели. Определите все возможности для исходного числа свечей.




@темы: Комбинаторика

20:50 

Раскраска

wpoms.
Step by step ...


Каждая диагональ правильного `2014`-тиугольника окрашена в один из `n` цветов. Любые две диагонали, пересекающиеся внутри многоугольника, окрашены в разные цвета. При каком минимальном значении `n` это возможно?



@темы: Комбинаторика

21:04 

Планируем отдых

wpoms.
Step by step ...


Исаак планирует девятидневные каникулы. Каждый день он собирается либо заниматься серфингом, либо кататься на водных лыжах, либо просто отдыхать. При этом в каждый из дней Исаак планирует заниматься чем-то одним. Он не планирует заниматься водными видами спорта два дня подряд. Какое количество расписаний каникул может составить Исаак?



@темы: Комбинаторика

21:48 

Не вектора

Леси
go luck yourself
В зарубежном экзамене по математике попадаются вот такие задания. Экзамен школьный (предполагает 11 классов), задание считается лёгким. Моя естественная идея, что это вектора, оказалось не верной по логическим соображениям. Что ещё может скрываться за такими заданиями? Никаких текстовых пояснений не дано.
`((7),(3)) - ((3),(7))` - ответ не существует.
`((15),(14))*((14),(14))*((14),(13))=210`
Это, наверняка, альтернативный принятому у нас способ записи, но для чего именно?..

@темы: Комбинаторика

12:45 

Бусики

wpoms.
Step by step ...


Три обруча расположены концентрически (см. рисунок). На каждом обруче через равные промежутки нанесены 20 бусинок, `10` из которых черного и `10` белого цвета. На каждом обруче бусинки пронумерованы числами от `1` до `20` начиная снизу и в направлении против часовой стрелки. Мы говорим о совпадении в позиции `i` если все три бусинки в позиции `i` имеют один и тот же цвет. Мы можем перемещать все бусинки вокруг любого обруча (при этом нельзя нарушать порядок их следования друг за другом). Покажите, что возможно (вращением) найти конфигурацию в которой будет не менее `5` совпадений.





@темы: Комбинаторика

07:13 

Теория вероятностей

Здравствуйте. Помогите, пожалуйста, разобраться с двумя задачами.

@темы: Теория вероятностей, Комбинаторика

12:24 

Задача по теории вероятностей

Добрый день!
Подскажите, пожалуйста, верно ли решена задача? Что-то я сомневаюсь((


@темы: Комбинаторика, Теория вероятностей

23:56 

Перестановки

Помогите пожалуйста решить задачу
сколькими способами можно переставить буквы слова "баллада", чтобы две буквы "а" не шли рядом?
у меня в решении поучается всего перестановок 7!/3!/2!
берем две буквы а как одну 6!/2!/2!
берем три буквы а как одну 5!/2!
Итого 7!/3!/2!-6!/2!/2!+5!/2!=300

@темы: Комбинаторика, Дискретная математика

15:23 

Задачи по теории вероятностей

Помогите,пожалуйста,разобраться с задачами:

1.Из шестизначных телефонных номеров, не содержащих одинаковых цифр, наудачу выбирается один. События А={цифры следуют в порядке возрастания}, В={первая цифра меньше последней}, А∩В, АUВ.
Построить пространство Ω элементарных исходов указанного эксперимента, описать события А, В, С= А∩В, D= АUВ как подмножества пространства Ω, определить смысл событий С, D

Пространство элементарных исходов,как я понял - всевозможные варианты номеров.Нужно узнать сколько существует таких шестизначных номеров.Кол-о цифр = 10,тогда P(10)-P(10-6) - я правильно думаю?вероятность события A=? {1;2;3;4;5;6} {1;3;4;6;7;9} не могу точно определить формулу,по которой можно найти все случаи?И не понятно,что значит описать события как подмножества пространства и определить смысл событий.

2.Вероятность попадания в цель при любом из 7 выстрелов равна 0,55. Найдите вероятность то- го, что произойдет:
1) Не менее 2 попаданий.
2) От 2 до 5 попаданий.

В первом случае использую формулу Бернулли и получается так: P7(m>=2)=P7(2)+P7(3)+P7(4)+P7(5)+P7(6)+P7(7)=C72*0,55^2*(1-0,55)^5+C73*0,55^3*(1-0,55)^4+... - правильно ли я делаю?А вот во втором случае,пишут,что используют формулу Лапласа.Но я не понял,как применить её к своей задаче.Может быть можно и в этом случае использовать формулу Бернулли?

@темы: Теория вероятностей, Комбинаторика

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная