Записи с темой: теория вероятностей (список заголовков)
19:27 

Теория верятностей

Здравствуйте! Задача следующая:

В среднем, 20% кустов смородины плодоносят 10 лет. При этом среднее квадратическое отклонение составляет 2,5 года. Оценить вероятность того, что выбранный куст смородины будет плодоносить от 7 до 13 лет.

Я понимаю, что здесь нужно применить формулу

`p (a < X < b) = Phi((b-m)/sigma)-Phi((a-m)/sigma)`

Со средним квадратическим отклонением все понятно. Оно равно 2,5 года.
За математическое ожидание я бы взял 10 лет.
Но как быть с 20%? Куда его подставлять?

Прошу помощи.

@темы: Теория вероятностей

18:16 

Вероятность

wpoms.
Step by step ...


Из вершин правильного `(2n + 1)` - угольника случайным образом выбираются три вершины. Считая выборы всех троек равновероятными, найдите вероятность того, что центр данного многоугольника лежит внутри треугольника, определяемого тремя выбранными точками.



@темы: Теория вероятностей, Комбинаторика

20:32 

Случайный выбор

wpoms.
Step by step ...


Случайным образом с равной вероятностью выбирается одно из девяти целых чисел 1, 2, ..., 9. Найдите вероятность того, что после `n` таких выборов (`n > 1`) произведение `n` выбранных чисел будет делиться на 10.



@темы: Теория вероятностей

20:10 

Математическое ожидание числа бросков монетки до выпадения первого орла

Задача следующая:

Найдите математическое ожидание числа бросков монетки до выпадения первого орла.

Прошу проверить, верны ли мои рассуждения.

Если орел выпал при первом бросании монетки, то получим:

`x_1=1`, `p_1=1/2`

Если орел выпал при втором бросании монетки, то получим:

`x_2=2`, `p_2=1/2*1/2=1/2^2`

Если орел выпал при третьем бросании монетки, то получим:

`x_3=3`, `p_3=1/2*1/2*1/2=1/2^3`

И так далее...

Математическое ожидание равно:

`sum_(k=1)^infty k/2^k =2`

Это правильно? Заранее спасибо!

@темы: Теория вероятностей

19:35 

Задача по теории вероятностей

Здравствуйте!
Задача такая:

Пять человек случайным образом (независимо друг от друга) выбирают любой из 7 вагонов поезда. Известно, что некоторые 2 вагона остались пустыми. Какова вероятность при этом условии, что все сели в различные вагоны, в том числе в первый и во второй?

Я решаю следующим образом:
Так как из семи вагонов поезда при рассадке в них пяти человек осталось пустыми два вагона, то это означает, что в каждый вагон сел один человек.

Общее число способов входа пяти людей в один из семи вагонов: `n=7^5`.
Число размещений по одному человеку из пяти в пяти вагонах: `m=A_5^5=5!`.
Вероятность того, что пять человек сели в разные вагоны, равна:
`P=m/n=(5!)/7^5`

Но каким образом можно учесть, что первый и второй вагоны окажутся заняты?

@темы: Теория вероятностей

19:50 

Теория вероятности

Помогите решить 7 вариант

@темы: Теория вероятностей

19:26 

Теория вероятности

Помогите пожалуйста с решением. Найти вероятность того что, в партии из 1000 изделий число изделий высшего сорта заключено между 550 и 600, если вероятность того, что отдельное изделие будет высшего сорта постоянна и равна 0,9.

@темы: Теория вероятностей

20:59 

Про кубик

L.ego
Добрый день!
ТерВер был 8 лет назад, многое забыла, но тут постаралась вспомнить ради задачки. Помогите, пожалуйста.

Условие:
Деревянный куб покрасили зеленой краской и разрезали на 27 одинаковых маленьких кубиков. Кубики перемешали и сложили из них куб такого же размера, как изначальный. С какой вероятностью куб будет полностью зеленым? Расписать ход мыслей.

Решала так:
читать дальше

@темы: Теория вероятностей

23:28 

Встаньте дети, встаньте в круг...

All_ex
Эллипс - это круг, который можно вписать в квадрат 25х40
Коллега подбросила интересную задачку...
Внутри круга `W` радиуса `R` произвольно выбран отрезок длины `R`. Этот отрезок является диаметром второго круга `w`. Найти вероятность того, что`w` полностью находится внутри `W`.

Немного поразмыслив пришёл к такому решению...

Гложет червь сомнения... так что, если кто видит неточности или ошибки, то высказывайтесь, пожалуйста, по поводу этого варианта решения...

@темы: Теория вероятностей

11:56 

Дилетант
На плечах гигантов, на спинах электронов
Помогите с детской задачей по комбинаторике ))
Точнее, по теории вероятностей, но дело всё же в комбинаторике.
Задача такая. Есть 10 человек, которые стоят в кругу. На 4 из них надеты белые перчатки, на 6 — черные.
Какова вероятность, что никакие два человека в белых перчатках не стоят вместе.

Формула классической вероятности `P(A)=m/n`.
И вот, проблемы уже начинаются с расчетом `n`.
Если считать просто "по формуле" перестановки с повторениями, то получаем всего перестановок таких людей: `{10!}/{4!*6!}`
И еще разделим на 10 из-за того, что они стоят в кругу. Имеем: `n={9!}/{4!*6!}`.
Я здесь не уверена до конца, что так можно...

В учебнике написан вот такой способ расчета `n`.
Ставим в круг 6 человек в черных перчатках (это можно сделать единственным способом: просто поставить). Расставляем в промежутки 4 человека в белых перчатках. Имеем: 6 способов для расстановки первого, 7 для второго, 8 для третьего, 9 для четвертого. И всё это разделим на 4!, так как они неразличимы.
Получим:
`n={6*7*8*9}/{4!}={9!}/{4!*5!}`
Т.е. с моим ответом не сходится.
Хорошо, но если мы сделаем наоборот: сперва расставим белых, потом черных?
Тогда имеем по той же логике:
`n={4*5*6*7*8*9}/{6!}={9!}/{3!*6!}`

Что я делаю не так?

@темы: Теория вероятностей, Комбинаторика

11:18 

Две случайных величины на отрезке

Добрый день! У меня есть задача, могли бы проверить моё решение.
Задача:
На отрезке `[0;1]` в точках `x,y` независимо выбранных из равномерного распределения, находятся два детектора элементарных частиц. Детектор засекает частицу, если она пролетает на расстоянии не более `1/3` от него. Известно, что поля восприятия покрывают весь отрезок. С какой вероятностью `y >= 5/6` ?
Моё решение:
1) Я нарисовал в квадрате 1х1 множество точек, которые удовлетворяют условию "детекторы покрывают весь отрезок"

2) Далее надо найти условную вероятность: Р(y > 5/6 | покрыт весь отрезок). Я буду искать эту вероятность как отношение благоприятных исходов ко всевозможным. Я полагаю, что априори мы попали в закрашенную область, значит в знаменателе стоит площадь двух закрашенных треугольников: `S = 2 * 1/3 * 1/3 * 1/2`. Теперь числитель. Я взял пересечение y >= 5/6 и двух закрашенных треугольников, получается один треугольник, площадь которого равна `1/6*1/6*1/2`
3) Нахожу их отношение, получаю `0.125`

@темы: Теория вероятностей

12:10 

Найдите стационарное распределение цепи Маркова, заданной переходными вероятностями p_ij
р00=1, рi,i+1=0,3, , pi,i-1=0,7, , pNN =0,7.


Я составила матрицу вероятностей. Но в строке N сумма вероятностей должна быть единица. У меня же в этой строке лишь одна 0,7.
Условие рi,i+1=0,3 выполняется только до N-1 строки....

И потом, решая систему, все вероятности у меня получаются равными нулю. Чего быть не может, так как должно выполняться условие нормировки.
Подскажите, пожалуйста, где у меня ошибка (конечно, видимо, ошибка как раз в построении матрицы)

@темы: Теория вероятностей

11:39 

Цепи Маркова

Найдите матрицу переходных вероятностей для Марковских цепей, описывающие следующий процесс:
в начальный момент времени 8 шаров размещены в двух урнах А и В поровну. На каждом шаге из общего числа 8 шаров случайно выбирается один шар и помещается с вероятностью 0,3 в урну А и с вероятностью 0,7 в урну В. Состояние цепи при каждом испытании—число шаров в урне А.


Мои рассуждения:
Цепь может находиться в 9-ти состояниях: 1 состояние - в А 1 шар; 2 состояние - в А 2 шара; 3 состояние - в А 3 шара;......; состояние 8 - в А 8 шаров; 9 состояние - в А 0 шаров.
Значит в начальный момент времени (транспонированный) вектор распределения имеет вид: (0, 0, 0, 0.3, 0, 0, 0, 0, 0.7)


Но я не уверена, что состояний и правда будет 9...

@темы: Теория вероятностей

15:40 

Теория принятия решений(теория вероятностей)

blackhawkjkee
Здравствуйте.
Уже несколько дней не могу разобраться как начать решать следующую задачу:

В двоичной системе связи передача информации происходит с помощью двух кодовых посылок, соответствующих двум сообщениям `s_0` и `s_1` . Потребитель информации принимает два сигнала `y_0` и `y_1` и декодирует их в символы «0» и «1» соответственно. Вероятности передачи в канал сообщений `s_0` и `s_1` равны `p (s_0 ) = 0,3` и`p (s_1 ) = 0,7`.
Наличие помех в канале связи, приводящих к искажению информации, характеризуется условными вероятностями:
`p ( y_0 | s_0 ) = p ( 0 | s_0 ) ; p ( y_1 | s_0 ) = p ( 1 | s_0 ) ;`
`p( y_0 | s_1 ) = p ( 0 | s_1 ) ; p( y_1 | s_1 ) = p ( 1 | s_1 ) .`
Определить алгоритм принятия решения и вычислить вероятность ошибки.

По примеру в методичке я сначала должен сформулировать гипотезы:
Пусть гипотеза `H_0` - передано сообщение `s_0`
Гипотеза `H_1` - передано сообщение `s_1`.

Тогда, пусть потребитель информации принимает сигнал `y_0`, которому присваивается символ «0». Находим вероятность этого события по формуле полной вероятности:
`p(y_0) = p(0) = P(H_0) P(0 | H_0) + P(H_1) P(0 | H_1) = 0,21`

Если даже это и верно(то что я написал выше), то дальше я не могу понять что делать.
Фотографии решения задачи из методички могу приложить, если понадобятся.
Заранее спасибо!

@темы: Теория вероятностей

13:07 

Теория вероятностей. Характеристические функции

IWannaBeTheVeryBest
Вопрос у меня по теореме, я немного не понял ее.
"Комплекснозначная функция `f(t)` действительной переменной `t` является х.ф. тогда и только тогда, когда
(i) `f(t)` является неотрицательно определенной
(ii) `f(0) = 1`"
И если второе условие я могу понять, то как понять первое? Разве можно говорить о комплекснозначных функциях, что они могут быть положительно или отрицательно определены? По определению такие функции возвращают комплексные числа. Они не бывают отрицательными или положительными. Если я конечно верно понимаю определение "положительно определенная функция". Это же функция, которая принимает положительные значения? Если нет, то я что-то недоучил когда-то видимо)

@темы: Теория вероятностей

22:59 

Комбинация нормальных CВ

В ходе решения задачи столкнулся с некоторым недопониманием в случае сложения двух нормальных СВ. А именно следующее: Есть две СВ `X` и `Y`, обе распределены нормально. Дальше объявляется новая CВ `Z = 0.5X+0.5Y`. И теперь возникает вопрос: а верно ли, что `0.5*f_X(10)+0.5*f_Y(10) = f_Z(10)`? У меня почему-то получается, что это неверно

@темы: Теория вероятностей

13:50 

Оценить с помощью неравенства Чебышева_2

IWannaBeTheVeryBest
Оценить сверху `P{|\eta_n/n - p^2| > \epsilon}`
если `\xi_1, \xi_2, \dots, \xi_{n + 1}` - результаты n + 1 испытаний схемы Бернулли (`P{\xi_i = 1} = p, P{\xi_i = 0} = 1 - p`)
а `\eta_n` - случайная величина, равная числу таких `i`, что `\xi_i = \xi_{i + 1} = 1`
Ну я так понимаю, что для начала надо рассмотреть хотя бы первые два испытания схемы Бернулли. Вероятность того, что обе величины будут равны 1 = `p^2`.
`\eta_n = \eta_{1,2} + \eta_{2,3} + \dots + \eta_{n,n+1}`
Так как все `\eta_{i, i+1}` распределены одинаково, то получается, что
`E[\eta_n] = E[\eta_{1,2}] + E[\eta_{2,3}] + \dots = np^2`
`E[\eta_n/n] = p^2`
Я думаю, что так как в исходной задаче вычитаемое под модулем как раз `p^2`, то я вроде как иду по верному пути.
Дальше
`D[\eta_n] = D[\eta_{1,2}] + D[\eta_{2,3}] + \dots = n * (E[\eta_{1,2}^2] - E^2[\eta_{1,2}]) = n(p^2 - p^4)`
`D[\eta_n/n] = (p^2(1 - p)(1 + p))/n`
`P{|\eta_n/n - p^2| > \epsilon} <= (p^2(1 - p)(1 + p))/(n\epsilon^2)`
Вроде так должно быть. Но в ответе
`(p^2(1 - p)(1 + 3p))/(n\epsilon^2)`
В принципе без разницы какой ответ в задачнике. Главное, чтобы решение было верное.

@темы: Теория вероятностей

16:37 

Оценить с помощью неравенства Чебышева

IWannaBeTheVeryBest
Оценить сверху неравенство `P{|\eta_n/n - 3.5| > \epsilon}, \epsilon > 0`, если
`\eta_n` - случайная величина равная сумме очков при `n` подбрасываниях игральной кости.
Не могу понять, как так получается, что сверху это оценено как `8.75/(n\epsilon^2)`
То есть каким образом здесь вообще ищется дисперсия и как здесь определено матожидание, если подбрасываний n штук. Или мне нужно сначала определить это n? то есть сверху это оценивается как `(D[\eta_n/n])/(\epsilon^2)`

@темы: Теория вероятностей

10:37 

Имеется 1000 параллелепипедов, каждая из сторон которых может принимать значения 0,5 или 1 с вероятностями 0,3 и 0,7 соответственно. С какой вероятностью суммарный объем всех параллелепипедов будет в пределах от 580 до 605?

@темы: Теория вероятностей

11:45 

Статистический анализ, проведенный по заказу авиакомпании, показал, что распределение веса (в кг) пассажира авиарейса с грузом хорошо описывается плотностью распределения
p(x)=Ax^3(150–x), x принадлежит интервалу (0,150).
Грузоподъемность самолета составляет 35 тонн. При посадке зарегистрировано 275 пассажиров. Какой коммерческий груз (в кг) можно дополнительно везти этим рейсом, чтобы вероятность перегрузки составила не более 0,2%.

@темы: Теория вероятностей

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная