Ознакомьтесь с нашей политикой обработки персональных данных
  • ↓
  • ↑
  • ⇑
 
13:52 

Про окружности

wpoms.
Step by step ...


Дан треугольник $ABC$ с прямым углом $C$. Точка $M$ --- середина $AB.$ Точка $G$ лежит на отрезке $MC$ и точка $P$ --- на прямой $AG$, при этом $\angle CPA = \angle BAC.$ Точка $Q$ лежит на прямой $BG$ и $\angle BQC = \angle CBA.$ Покажите, что окружности, описанные около треугольников $AQG$ и $BPG$, пересекаются на отрезке $AB.$



@темы: Планиметрия

18:30 

Теория чисел. Корень многочлена и алгебраичность числа

IWannaBeTheVeryBest
Первую задачу я просто хочу проверить - прав я или нет.
"Проверить, является ли число алгебраическим?
`2sqrt(3) + 3sqrt(2)i`"
Число является алгебраическим, если оно является корнем какого-то многочлена с рациональными коэффициентами. Также, множество алгебраических чисел - поле.
Значит достаточно рассмотреть по отдельности каждое число.
1) `i` - алгебраическое: `x^2 + 1 = 0`
2) `3sqrt(2)` - алгебраическое: `x^2 - 18 = 0`
3) `2sqrt(3)` - алгебраическое: `x^2 - 12 = 0`
Значит исходное число - алгебраическое.
Вот со второй - проблемы.
"a - корень многочлена `x^3 + 2x + 7 = 0`. Корнем какого многочлена является число `a^2 + a - 3`?"
Пока из идей, только решить грубо
`(x - a)(x - b)(x - c) = (x^2 - x(a + b) + ab)(x - c) = x^3 - x^2(c + a + b) + x(ab + bc + ac) - abc`
И тупо система
`{(a + b + c = 0), (ab + bc + ac = 2), (-abc = 7):}`
Находим `a`, (хотя наверное любой другой корень тоже подойдет, но наверное имеется ввиду, что a - действительный корень, а остальные будут комплексными), подставляем в `a^2 + a - 3`, и находим простой многочлен, для которого это будет являться корнем.
А если имеется ввиду, что нужно найти такой многочлен, у которого корнями будут `a^2 + a - 3`, `b^2 + b - 3`, `c^2 + c - 3`, то это тоже будет несложно сделать.
Но наверняка это слишком грубо и сложно. Наверное можно быстрее.

@темы: Теория чисел

14:49 

Задачи по дифурам

Помогите с заданием:
1) При каком значении w периодическое решение уравнения y''-6y'+22y=sin wt имеет наибольшую амплитуду?
2) Дано уравнение y'''+a1y''+a2y'+a3y=f(x) с постоянными коэффициентами a1, a2, a3. Корни его характеристического уравнения h1,h2,h3 известны. Указать вид частного решения для различных f(x): h1=корень(13), h2=-корень(13), h3=корень(13):
а) f(x) = x^2cos(корень(13))x
б) f(x) = 3e^(корень(13)*x)-(x^3)/3
в) f(x) = x^2*e^(-корень(13)*x)*(sin(корень(13)*x+7*cos(корень(13))*x)

@темы: Математический анализ, Дифференциальные уравнения

14:34 

Пятнашки

@Заноза
Yesterday I expected a miracle that’s why I opened the door.
Можно ли "вырулить" из такой ситуации?



Я знаю, это тоже математика. :yes:

@темы: Головоломки и занимательные задачи

23:45 

Уравнение с бесконечным корнем

IWannaBeTheVeryBest
Прошу прощения за мой скудный словарный запас, но я не знал, как еще это назвать. Как эти уравнения называются
`sqrt(2 + xsqrt(2 + xsqrt(2 + \dots))) = x + 1`
Хоть найти как решаются, а то не гуглится, ибо не знаю, как точно назвать.

@темы: Теория чисел

23:14 

Точки на плоскости

wpoms.
Step by step ...


На плоскости выбраны 2016 различных точек. Покажите, что, по крайней мере, 45 расстояний между этими точками различны.



@темы: Планиметрия

21:25 

Не все простые

wpoms.
Step by step ...


Найдите все натуральные числа `n`, для которых найдутся простые числа `p`, `q` такие, что выполняется равенство
`p(p+1) + q(q+1) = n(n+1)`.




@темы: Теория чисел

18:02 

Линейная алгебра

Добрый день! Вот моё задание.

Дано линейное простраство L, которую образуют полиномы с помощью реальных коэффицентов, степень которых не превышает 2.
Базис e пространства L: e1=1;e2=x;e3=x^2, а также отображение А в этом пространстве: A(P(x))=P(x+3).
Доказать, что А – линейный оператор. Написать линейного оператора А матрицу в базисе е: Ае.

----
Не могли бы подкнуть идею, как док-ть, что А - линейный оператор?

@темы: Линейная алгебра

20:30 

Неразрешимые гипотезы

Добрый день
Посмотрел последнее видео Numberphile про Проблему Гольдбаха. Они говорят, что возможно, её нельзя доказать, так как изначально мы определили мало аксиом и нужно ввести больше. И что из-за этого, возможно, эта проблема вообще недоказуема в нашей системе аксиом. У меня возник вопрос, а существует ли какая-нибудь гипотеза для которой доказано, что доказательства её подтверждения или опровержения просто не существует?

@темы: Литература

20:05 

Для сторон треугольника

wpoms.
Step by step ...


Пусть `a`, `b` и `c` - длины сторон треугольника. Докажите, что `\frac{ab+1}{a^2+ca+1} + \frac{bc+1}{b^2+ab+1} + \frac{ca+1}{c^2+bc+1} > \frac{3}{2}`.



@темы: Доказательство неравенств, Планиметрия

13:37 

Изопериметрическая задача

IWannaBeTheVeryBest
"Найти экстремум функционала `int_{0}^{1} y^2 + (y')^2 dx` при условии, что `int_{0}^{1} y^2 dx = 1`; `y(0) = y(1) = 0`"
kpfu.ru/docs/F1589821731/metod_report.pdf (страница 20).
Сначала составляется Лагранжиан:
`L = \lambda_0 (y^2 + (y')^2) + \lambda_1 * y^2`
Дальше надо составить уравнение Эйлера, решить его с данными условиями и проверить, обнуляются ли множители Лагранжа одновременно, дабы установить факт того, что необходимое условие экстремума первого порядка выполнено.
`L_y = 2\lambda_0 * y + 2\lambda_1 * y`
`L_(y') = 2\lambda_0 * y'`
`d/(dx) L_(y') = 2\lambda_0 * y''`
Уравнение Эйлера:
`2\lambda_0y + 2\lambda_1y - 2\lambda_0 * y'' = 0`
`y''\lambda_0 - (\lambda_0 + \lambda_1)y = 0`
Если `\lambda_0 = 0`, то `\lambda_1 = 0`. Есть конечно случай, когда `\lambda_1 \neq 0`, но тогда `y = 0`, а это противоречит первому условию `int_{0}^{1} y^2 dx = 1`.
Решая уравнение получаем, что
`y = C_1 * e^{sqrt((\lambda_0 + \lambda_1)/(\lambda_0))*x} + C_2 * e^{-sqrt((\lambda_0 + \lambda_1)/(\lambda_0))*x}`
Возьмем `\lambda_0 = 1`. Тогда
`y = C_1 * e^{sqrt(1 + \lambda_1)*x} + C_2 * e^{-sqrt(1 + \lambda_1)*x}`
Подставляем в наши условия
`y(0) = C_1 + C_2 = 0`
`y(1) = C_1 * e^{sqrt(1 + \lambda_1)} + C_2 * e^{-sqrt(1 + \lambda_1)} = 0`
Тут, кроме тривиального решения, больше я не вижу решений. Однако `y \neq 0`. Значит надо подобрать другое значение `\lambda_0`? Или в условиях косяк какой-то?

@темы: Уравнения мат. физики

13:01 

allons-y-freedom
Sky upon the wall (c)
Всем здравствуйте. Вступительное нытьё
Выход увидел для себя один: найти готовое решение какой-нибудь задачи и вставить туда данные.

Взял вот это: ecson.ru/economics/post/zadacha-3.raschyot-para...
Посчитал, что вместо "среднедушевого прожиточного минимума в день одного трудоспособного, руб., х" могу взять результат деления прожиточного минимума в 12-ти регионах на 30 (по кол-ву дней в месяце), а вместо "Среднедневной заработной платы, руб., у" - результат деления средней з/п по региону на 30 [брал это, а не МРОТ, потому что МРОТ в РФ чет ниже прожиточного минимума. либо я нашел левые данные].

У них так красивенько там всё получается, у меня дикие данные, по критерию Стьюдента параметры статистически получились не значимы. а когда я пошёл дальше и решил потыкать "как у них там", анализ верхней и нижней границ доверительных интервалов показал, что они не являются статистически незначимыми и существенно отличны от нуля.

Я эконометрический пень и совершенно не понимаю, что я делаю не так.
Подскажите, пожалуйста.

Еще раз ссылка на "их" данные: ecson.ru/economics/post/zadacha-3.raschyot-para...
Что вышло у меня по этой "методичке": yadi.sk/i/M2pPczDm3JeoVw (листы 3-4).
Ссылка на решенную "ими" задачу в экселе: yadi.sk/i/E5D9QV5R3JeogT
У меня по этой штуке опять же вышел трэш (ну естестна одни и те же методы решения задачи), начиная с ошибки апроксимации всё оч плохо.

Помогите, пожалуйста.
Что я делаю не так и что сделать, чтобы стало так?

17:51 

Математическая олимпиада в Словении

wpoms.
Step by step ...
Математическая олимпиада в Словении


Республиканская олимпиада школьников по математике

Конкурс проводится в три этапа для 7-9 классов основной школы и 1-4 классов средней. Для первого, школьного, этапа используются задания конкурса Кенгуру. На региональном и республиканском этапах задания для средней школы делятся на три категории, для гимназий, технических училищ и прочих школ. На сайте организаторов выложены задания за 2013-2015 годы.

Сайт организаторов олимпиады



@темы: Олимпиадные задачи

15:50 

ДОБА

webmath
Если сообщество пожелает, размещу ссылку на 12 вариантов досрочного базового ЕГЭ

@темы: ЕГЭ

22:18 

Математическая олимпиада в Черногории

wpoms.
Step by step ...
Математическая олимпиада в Черногории


Республиканская олимпиада школьников по математике

После обретения независимости формат проведения олимпиады поменяли. Сначала исключили региональный этап, потом организаторы избавили себя от необходимости готовить отдельные комплекты заданий для каждой параллели. В настоящий момент проводятся два этапа - школьный и республиканский. В финале участвуют ученики 6, 9 классов и учащиеся средней школы.

Сайт организаторов олимпиады




20:21 

Вариационное исчисление. Двойной интеграл. Экстремум функционала

IWannaBeTheVeryBest
Вот задачка такая
"Найти экстремум функционала
`iint_{\Omega} (\nabla u)^2 dS`; `\Omega = {(r, \phi): 2<= r <= 3}`; `u|_{r = 2} = 4sin(3\phi)`; `u|_{r = 3} = 4cos(2\phi)`"
Вообще есть какие-то идеи для такого случая? В случае одного интеграла я представляю как решается. Надо составлять уравнение Эйлера. Для этого случая вроде тоже знаю, как запишется уравнение Эйлера, но тут как-то странно, даже не знаю. Интеграл по области. Сама область лежит в плоскости. Значит можно предположить, что это все же двойной интеграл. `\nabla u = u_x*\vec(e_1) + u_y*\vec(e_2) + u_z*\vec(e_3)`. Дальше формула Эйлера
`F_u - (u_x*\vec(e_1) + u_y*\vec(e_2) + u_z*\vec(e_3))_x - (u_x*\vec(e_1) + u_y*\vec(e_2) + u_z*\vec(e_3))_y - (u_x*\vec(e_1) + u_y*\vec(e_2) + u_z*\vec(e_3))_z = 0`
Вообще пока я не могу понять. Как то же тут можно перейти к двойному интегралу? Ну типа по переменным `r; \phi`?

@темы: Уравнения мат. физики

02:17 

Псевдослучайный генератор


@темы: Юмор

20:44 

Функциональный анализ

Пусть `A: L_2[0,1] rightarrow L_2[0,1]` - ограниченный оператор, причем `I m A subset C[0,1]`. Доказать, что `A` компактен.
Соображения:

@темы: Функциональный анализ

12:27 

Величина угла

wpoms.
Step by step ...


Пусть в треугольнике $ABC$ $\angle BAC = 60^\circ,$ $E$ --- точка на стороне $BC$ такая, что $2\angle BAE = \angle ACB$. Пусть $D$ будет второй точкой пересечения $AB$ с окружностью, описанной около треугольника $AEC$ и точка $P$ --- вторая точка пересечения $CD$ c окружностью, описанной около треугольника $DBE$. Вычислить величину угла $\angle BAP$.



@темы: Планиметрия

13:25 

Линейное программирование

Merodie
Where there's a will there's a way
Добрый день. Есть задачка:
Найти оптимальный план перевозок машин, выпущенных на 2 заводах в количествах 160 и 200 штук для 2 автохозяйств, потребности которых соответственно равны 110 и 250 машин. Затраты на перевозку 1 машины с 1-го завода 1 автохозяйству равны 3 000 р., 2 автохозяйству равны 4 000 р. Те же затраты на перевозку 1 машины со 2-го завода 1 автохозяйству равны 5 000 р., 2 автохозяйству равны 2 000 р.
Я пока допер до того, чтобы сделать так:
читать дальше
Спасибо.

@темы: Линейное программирование, Высшая алгебра

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная