wpoms.
Step by step ...


В треугольнике $ABC$ точки $D$ и $E$ --- основания высот треугольника, опущенных из вершин $B$ и $C$ соответственно. Точка $M$ симметрична точке $E$ относительно прямой $AC,$ точка $N$ симметрична точке $E$ относительно прямой $BC.$ Описанная окружность треугольника $CMN$, с центром $O,$ пересекает прямую $AC$ в точке $Q$ ($Q \neq C$). Докажите, что $QO \perp DE.$



@темы: Планиметрия