wpoms.
Step by step ...


Пусть `a_1, \ a_2, \ ldots, \ a_{2017}` - неотрицательные действительные числа такие, что `a_1 + a_2 + ldots + a_{2017} = 1`. Какое наибольшее значение может принимать выражение
`( a_1 + \frac{a_2}{2} + \frac{a_3}{3} + \ldots + \frac{a_{2017}}{2017} )^2 * (a_1 + 2*a_2 + 3*a_3 + \ldots + 2017*a_{2017})`?





@темы: Теория чисел, Рациональные уравнения (неравенства)