17:48 

История уральских математических олимпиад

wpoms.
Step by step ...
История уральских математических олимпиад

Институт математики и механики Уральского отделения РАН выпустил уникальную книгу — «Свердловские математические олимпиады» (авторы-составители С.Э. Нохрин, Е.Г. Пыткеев, В.Т. Шевалдин). Издание, оформленное уральским художником Михаилом Сажаевым, включает в себя более 1600 задач, предлагавшихся в 1961–2001 годах на Свердловских областных математических олимпиадах, и посвящено С.Б. Стечкину и А.Ф. Сидорову.
Академик П.С. Александров называл олимпиады одной из наиболее действенных форм помощи самым молодым дарованиям. Международное олимпиадное математическое движение зародилось в Будапеште в 1894 году. В России первая олимпиада была проведена в Ленинграде в 1934 году. Свердловским олимпиадам в этом году исполняется 70 лет. Организаторами первой олимпиады были преподаватели Уральского государственного университета А.Н. Тулайков и А.А. Меленцов. С 1961 года стали проводиться ежегодные областные математические олимпиады с участием органов образования. Огромную роль в становлении олимпиадного движения неизменно играли ученые Института математики и механики и Уральского государственного университета, которые сберегли архивы олимпиадных задач, легшие в основу книги. Целью олимпиад является возжигание огня в душах молодого поколения и привлечение новых сил в российскую науку. Многие задачи представляют собой творческое наследие известных уральских математиков, звучат необычно и провоцируют нестандартные подходы к решению. Один из организаторов первых математических олимпиад в нашей стране выдающий математик А.Н. Колмогоров говорил: «Для успеха на олимпиаде необходимы некоторые специальные типы одаренности, которые вовсе не обязательны для успешной исследовательской работы». Тем не менее, олимпийский огонь освещал жизнь и путь в науку многим сотрудникам Института математики и механики. Книга «Свердловские математические олимпиады» выпущена к пятидесятилетнему юбилею Института и оригинально оформлена известным уральским художником М. Сажаевым. Элементами оформления являются придуманные им нереальные визуальные объекты. Как пишет художник, «абсурд тревожит и будит юный ум, а это вечный призыв к поиску и размышлению». По мнению учителей новая книга стала заметным событием в школьном образовании Екатеринбурга и области. Она вручалась в качестве приза победителям областных математических олимпиад, прошедших в феврале 2006 года.

Будем же гордиться тем, что родилось у нас на Урале 70 лет назад и пестовалось несколькими поколениями уральских математиков.


Е. ДОЛГОВА, В. ШЕВАЛДИН

Пишет Гость:
26.04.2018 в 10:57




Нохрин C.Э., Пыткеев Е.Г., Шевалдин В.Т. Свердловские математические олимпиады. 2005. — 439с., 216 ил.
Приведены материалы сорока одной Свердловской математической олимпиады школьников (более 1000 задач). К задачам 1991 — 2001 гг имеются ответы, указания или полные решения.
Книга предназначена для учащихся 6 — 11-х классов, интересующихся математикой, а также для преподавателей, ведущих внеклассную работу по математике.
drive.google.com/file/d/0ByXEl13981ctRXlfSEpWbT...

Кумков С.С., Нохрин С.Э., Пыткеев Е.Г., Хлопин Д.В., Шевалдин В.Т. Вузовско-академические олимпиады. 2012. — 305 с.
В книге собраны материалы десяти вузовско-академических математических олимпиад Свердловской области, проходивших в 2002 – 2011 годах. Ко всем 360 задачам приведены полные решения. Книга предназначена для учащихся 5 – 11 классов, интересующихся математикой, а также для педагогов, ведущих кружковую работу по математике.
drive.google.com/file/d/0ByXEl13981ctM2hYR1hDMy...

Васильев С.Н., Кумков С.С., Нохрин C.Э., Пыткеев Е.Г., Хлопин Д.В., Шевалдин В.Т. Неэлементарные задачи элементарной математики. Том 3. Районные олимпиады. 2014. — 276 с.
Перед Вами третий том сборника «Неэлементарные задачи элементарной математики». Первые два тома содержали задачи математических олимпиад школьников Свердловской области до 2000-го года включительно и задачи вузовско-академических олимпиад 2001 – 2011 гг. В настоящем сборнике представлены задачи районных туров последних лет.
drive.google.com/file/d/0ByXEl13981ctdW1jVXFVUG...

Кумков С.С., Нохрин C.Э., Пыткеев Е.Г., Хлопин Д.В., Шевалдин В.Т. Неэлементарные задачи элементарной математики. Том 4. Городские математические олимпиады. — Екатеринбург: ООО «Издательство УМЦ УПИ», 2017. — 382 с.: 104 ил.
Перед Вами четвертый том сборника «Неэлементарные задачи элементарной математики». Первые три тома содержали задачи математических олимпиад школьников Свердловской области до 2000-го года включительно, задачи вузовско-академических олимпиад 2002 – 2011 гг и задачи районных туров 2002 – 2014 гг. В настоящем сборнике собраны задачи окружных туров 2000 – 2008 гг, вузовско-академических олимпиад 2012 – 2016 гг., районных туров 2015 – 2017 гг. и избранные задачи областных олимпиад Свердловской области.
drive.google.com/file/d/0ByXEl13981ctNDRPNEFjUU...

URL комментария

Благодарю авторов и тех, кто опубликовал эти книги в сети.

@темы: Олимпиадные задачи, Литература

Комментарии
2018-04-26 в 21:21 

Спасибо!

2018-04-26 в 23:58 

Дилетант
На плечах гигантов, на спинах электронов
Спасибо!

2018-04-27 в 00:38 

olya11
От чистого истока в Прекрасное далеко
Спасибо :red:

2018-04-27 в 19:52 

All_ex
Эллипс - это круг, который можно вписать в квадрат 25х40
И снова спасибо...

2018-04-29 в 06:27 

Есть ли возможность у кого-либо выложить 2-е издание первого тома 2013 года?
Обложка тут: Неэлементарные задачи элементарной математики. Том 1. Свердловские математические олимпиады

2018-04-29 в 11:06 

beubeff, чем, кроме обложки, это издание отличается?

URL
     

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная