17:59 

Привести к жордановой форме матрицу

IWannaBeTheVeryBest
Так что-то решил повторить и туплю в примере
`A = ((1,0,1),(0,1,-1),(-1,-1,1))`
Дальше, насколько я помню как нас учили, надо найти собственные числа этой матрицы, потом собственные вектора, к ним присоединенные найти, если нужно, из них составить матрицу S и найти жорданову форму матрицы по формуле
`J_A = S^{-1} * A * S`
Окей. (лямбду на t заменю, ибо так проще писать)
`|A - t E| = |(1-t,0,1),(0,1-t,-1),(-1,-1,1-t)| = (1 - t)^3`
`t = 1` (кр. 3)
Дальше видимо я ошибаюсь где-то.
`((0,0,1,|0),(0,0,-1,|0),(-1,-1,0,|0))`
Здесь первый собственный вектор будет
`\vec{x_1} = C * ((-1),(1),(0))`
Потом, насколько я помню, в расширенную матрицу справа вставляются элементы данного собственного вектора. Ну как бы получается, что у нас получился один вектор, а собственных значений 3. Поэтому надо искать присоединенный вектор. То есть
`((0,0,1,|-1),(0,0,-1,|1),(-1,-1,0,|0))`
Тут вектор будет
`\vec{x_2} = C_1 * ((-1),(1),(0)) + C_2 * ((0),(0),(1))`
И наконец еще один вектор. Как я понимаю, ищется так
`((0,0,1,|0),(0,0,-1,|0),(-1,-1,0,|1))`
Получился
`\vec{x_3} = C_3 * ((-1),(1),(0)) + ((-1),(0),(0))`
И получается, что `S = ((-1, 0, -1),(1, 0, 0),(0, 1, 0))`
Где я неверно посчитал что-то? Просто дальше с перемножением у меня косяк получается. Там над диагональным элементом где-то -1 вылезает.

@темы: Линейная алгебра

Комментарии
2018-01-09 в 23:12 

All_ex
Эллипс - это круг, который можно вписать в квадрат 25х40
Когда искали присоединённый собственный вектор, то знаком ошиблись... `\vec{x_2} = ((0),(0),(-1))`
Соответственно у второго присоединённого тоже знак поменяется...

2018-01-10 в 09:39 

IWannaBeTheVeryBest
All_ex, да, точно) Все получилось, спасибо)

2018-01-10 в 09:55 

All_ex
Эллипс - это круг, который можно вписать в квадрат 25х40
welcome...

     

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная