wpoms
Step by step ...
Очередная порция задач из Математики в школе. (vk.com/club1126038)

5463.
Сорок детей водили хоровод. Из них 22 держали за руку мальчика и 30 держали за руку девочку. Сколько девочек было в хороводе?
%Е.В. Бакаев (Москва)

5464.
На сторонах `AB` и `BC` треугольника `ABC` выбраны точки `M` и `N,` соответственно. Известно, что `BM = BN` и `AO = OC,` где `O` --- точка пересечения отрезков `AN` и `CM.` Докажите, что треугольник `ABC` равнобедренный.
%Из задач олимпиады «Формула Единства/Третье Тысячелетие», 2015-2016

5465.
Существуют ли такие целые числа `m` и `n,` что:
а) уравнение `x^2 + mx + n = 0` не имеет корней, а уравнение `[x^2] + mx + n = 0` имеет?
б) уравнение `x^2 + mx + 2n = 0` не имеет корней, а уравнение `[x^2] + 2mх + n = 0` имеет?
(`[\alpha]` --- целая часть числа `\alpha.`)
%А.И. Храбров (С.-Петербург)

5466.
Пусть `l` --- общая внешняя касательная к окружностям `S_1` и `S_2,` касающимся друг друга внешним образом, а `C_1` --- окружность, вписанная в криволинейный треугольник, ограниченный `S_1,` `S_2` и `l.` Окружности `C_2,` ..., `C_n` построены так, что `C_{k+1}` касается внешним образом `S_1,` `S_2` и `C_k,` `k = 1, ..., п-1` (рис. 1).

Найдите отношение расстояния от центра окружности `C_n` до прямой `l` к радиусу этой окружности.
%А.Ю. Эвнин (Челябинск)

5467.
Имеется `n`-вершинный граф, про который мы должны выяснить, связный ли он. За один шаг можно про любую пару вершин узнать, соединены ли эти вершины ребром. Существует ли алгоритм, гарантирующий нам выполнение задачи быстрее, чем за `(n(n-1))/2` шагов?
%К.А. Кноп (С.-Петербург)

@темы: Головоломки и занимательные задачи