• ↓
  • ↑
  • ⇑
 
Записи пользователя: KirillEkb (список заголовков)
23:43 

Объем n-мерного шара

Здравствуйте. Помогите пожалуйста разобраться с задачей.

Объем n-мерного шара единичного радиуса можно найти по формуле V_n = V_(n-1) * I_n, где I_n = integral (cos^n x) dx, x=[-pi/2..pi/2]

V_n,2e = V_(n-1)*I_n,2e, где I_n,2e = integral (cos^n x) dx, x=[-e..e] - объем "среднего слоя" n-мерного шара. Слой этот расположен симметрично относительно центра шара. Толщина слоя достаточно мала и равняется 2e (два эпсилон).

Требуется найти предел отношения объема такого слоя к объему всего шара при n -> infinity.

Иначе говоря lim ( [integral (cos^n x) dx, x=[-pi/2..pi/2]] / [integral (cos^n x) dx, x=[-e..e]] ) as n ->infinity

Интуитивно ясно и достаточно очевидно из графика, что предел равен 1, поскольку при увеличении n график все сильнее будет сжиматься к Oy, но показать этот результат аналитически пока не удалось. Манипуляции с reduction formula к успеху не привели.

Спасибо.

@темы: Математический анализ

10:52 

Прошу помощи с пределом

Здравствуйте!

Прошу помочь с вычислением предела. Стандартные методы, вроде домножения на сопряженное, лопиталь, оценка сверху-снизу, результатов не принесли. Спасибо.

читать дальше

`lim_(n->oo) 2n(root 7 (n^7+7n^6) - sqrt (n^2+2n))`

@темы: Пределы, Математический анализ

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная