Ознакомьтесь с нашей политикой обработки персональных данных
  • ↓
  • ↑
  • ⇑
 
Записи пользователя: IWannaBeTheVeryBest (список заголовков)
14:58 

Исследовать функцию двух переменных на равномерную сходимость

IWannaBeTheVeryBest
`f(x,y) = (xy)/(x^{2} + y^{2}), X \in (1; \infty), y \to 0+`
Я так понимаю, что нужно исследовать функцию по определению. Но как же я это не люблю делать. А точнее сказать - не умею. Я реально хочу научиться пользоваться всеми этими эпсилон и дельта, но в том же Фихтенгольце дано просто определение равномерной сходимости и все. Нет примеров использования этого определения. Я просто не понимаю, как эти эпсилон и дельта использовать. Я даже слабо представляю что они вообще означают. Если я даже примерно, на интуитивном уровне, понимаю определение, то я не в курсе, как его применить на практике. А голая теория - это что-то из области ада.
По признаку Коши, функция двух переменных сходится к своей предельной функции, если
`\forall \epsilon > 0 \exists \delta > 0: \forall y',y'' \in {y}: 0<|y' - y_0|< \delta; 0<|y'' - y_0|< \delta => |f(x, y') - f(x, y'')| < \epsilon`
Единственное, что приходит в голову - подставить пока хотя бы во второе неравенство нашу функцию вместе с этими игреками.
`- \epsilon < (xy')/(x^{2} + y'^{2}) - (xy'')/(x^{2} + y''^{2}) < \epsilon`
Ну и что отсюда я должен получить? Наверняка какую-то оценку, при которой наша функция при любых Х будет ограничена какими-то произвольными положительными числами. Хотя может у меня уже каша в голове.
В первых двух неравенствах y' и y'' просто ограничены дельтой как я понимаю, раз `y_0 = 0`.
Я не пытаюсь сделать так, чтобы за меня решили. Я сам хочу дойти до ответа. Мне пофиг. Хоть весь день угроблю на одно задание.

@темы: Математический анализ

23:07 

Дифференциальные уравнения

IWannaBeTheVeryBest
Всем привет. Что-то залипаю, уже вечер. Такие условия.
`x^2y'' - 2y = 0`
`\lim_{x \to 0} y(x) = 0; y'(1) = 1`
Решаю так.
1. Подбираю частное решение. Очевидно это `x^2`.
2. Замена `y = x^2*z`
`y' = 2xz + x^2z'`
`y'' = 2z + 2xz' + 2xz' + x^2z'' = 2z + 4xz' + x^2z''`
3. Подставим
`x^4z'' + 4x^3z' = 0`
`xz'' = -4z'`
4. Замена `z' = p`
`xp' = -4p`
`(dp)/p = -4dx/x`
`ln|p| = -4(ln|x| + ln|c|) = -4(ln|cx|)`
`p = (c_1*x)^{-4}`
`z = 1/(c_1)^4 * (-1/(3x^3) + c_2)`
5. Кидаю все в подстановки пункта 2
`y = x^2*c_2/(c_1)^4 - 1/(3(c_1)^4*x)`
`\lim_{x \to 0} x^2*c_2/(c_1)^4 - 1/(3(c_1)^4*x) = 0`
Где я ошибся? Потому что этот предел я не могу разрешить. Константы никак не влияют на то, что предел равен минус бесконечности. Если даже z и z' кину в y' и у меня получится система на две константы это ничего не изменит. Хелп плиз.

@темы: Дифференциальные уравнения

22:32 

Что за вид дифференциальных уравнений.

IWannaBeTheVeryBest
`y'' + y = 2x - pi; y(0) = 0, y(pi) = 0`
Тут вроде похоже на неоднородное дифференциальное уравнение с постоянными коэффициентами, но меня смущают данные начальные условия. Вроде как всегда давалось начальное условие на y', а потом на y. Но тут как-то странно. Два игрека дано. Может это вовсе не то? Подскажите, что это за зверь такой. Инфу могу сам найти и разобраться как решается.
`y' = 1 + xsin(y); y(pi) = 2pi`
Тоже не могу сообразить что за вид. Может и не знаю вовсе.

@темы: Дифференциальные уравнения

14:11 

Исследовать функцию трех переменных на экстремум

IWannaBeTheVeryBest
Значит дана такая функция
`u = zln(z) - z - z ln(xy) + xy + x^2+ 2y^2 - 4x - 2y`
Знаю, что надо составить систему уравнений из частных производных по всем аргументам и приравнять их к 0. Но тут очень страшные получаются частные производные. Я что-то не могу найти идею, как решить данную систему:
`(\delta u)/(\delta x) = -z/x + y + 2x - 4 = 0`
`(\delta u)/(\delta y) = -z/y + x + 4y - 2 = 0`
`(\delta u)/(\delta z) = ln(z) - ln(xy) = 0`
Может я частные производные неверно нашел. Просто как-то с логарифмами система вообще не идет.
Еще, если можно было бы ее привести сразу к квадратичной форме, то можно было бы сразу пользоваться критерием Сильвестра. Но ее видимо никак сразу так не привести к квадратичной форме. Опять логарифмы мешают. Просто ступор. Есть ли какие-то другие способы исследовать на экстремум эту функцию?

@темы: Математический анализ

14:33 

Замена переменных в уравнении.

IWannaBeTheVeryBest
Задание такое:
"Преобразовать уравнение, введя новые переменные.
`x * (\delta ^{2} z)/ (\delta x^2) + 2x * (\delta ^{2} z)/ (\delta x \delta y) - x * (\delta ^{2} z)/ (\delta y^2) + (\delta z)/(\delta x) + (\delta z)/(\delta y) = 4`
Перейти к новым переменным `u = x + y; v = x - y` и новой функции `w = z*x`"

Надо как-то сначала подставлять в уравнение эти переменные? Ну как бы понятно, что `x = (u + v)/2; y = (u - v)/2`, но когда этот переход делать. Вроде по первому условию надо делать преобразование благодаря переходу к этим переменным. Я вообще думал, что сначала надо выразить z из этой новой функции `z = w/x` и искать тут частные, производные. Потом подставлять в уравнение. Затем, когда останутся x и y заменить их через u и v.

@темы: Математический анализ

21:40 

Функции нескольких переменных.

IWannaBeTheVeryBest
Задача такая:
"Определяет ли уравнение `F(\vec x, y) = 0` (`F(\vec x,\vec y) = 0`) неявную функцию `y = f(\vec x)` (`\vec y = f(\vec x)`) в точке М? Будет ли эта функция дифференцируема? Если да, найти ее дифференциалы и все производные первого и второго порядков."
Функции две в системе:
`F_1(x, \vec y) = x^2 + y_1^2 - y_2^2 - 1`
`F_2(x, \vec y) = x^2 + y_1^2 + 3y_2^2 - 5`
Точка
`M(1,1,1)`
Я не понимаю, как вообще с системой работать. И так все интересно складывается, что именно в моем варианте дана система. Я рад просто... Ничего не могу нагуглить по этой теме относительно системы. Какие критерии у системы будут тоже не знаю. Может надо по отдельности рассматривать эти функции? Не думаю. Если нет, то как еще и дифференциалы отсюда искать? Ну просто замечательно.
В случае одной функции, там, если не ошибаюсь, можно просто попробовать выразить игрек через икс. А тут что-то странное прямо.

@темы: Математический анализ

23:14 

Задача на дифференциальные уравнения

IWannaBeTheVeryBest
Задача такая.
"Написать уравнение кривой, проходящей через точку M(0; 4), если известно, что длина отрезка, отсекаемого на оси ординат нормалью, проведенной в любой точке кривой, равна расстоянию от этой точки до начала координат".
Проблема в том, что здесь столько БУКАФ, что я ничего не могу себе представить. У меня ощущение, что создатели этой задачи специально хотят усложнить ее тупо таким текстом, что ее фиг представишь. Вот что это? "что длина отрезка, отсекаемого на оси ординат нормалью..." Как отрезок может отсекаться отрезком?? Это как? Этот отрезок от 0 до какого-то "а" или от 4 до "а"?
В общем-то все остальное конечно понятно, но представить я это просто не могу. Ну конечно же мне надо найти такую кривую, поэтому, теоретически, я и не должен ее себе представлять. Что делать? Или есть какой-то аналитический шаблон?

@темы: Математический анализ, Дифференциальные уравнения

17:06 

Условный экстремум функции при заданном уравнении связи.

IWannaBeTheVeryBest
Всем привет. Вообще мне попалась задачка несколько по-сложнее. Дело в том, что она текстовая и нет явной функции и уравнения связи. Вот задача.
"В заданный шар радиуса R вписать прямоугольный параллелепипед наибольшего объема." Собственно все.
Мои действия. Если требуется вписать параллелепипед наибольшего объема, то надо найти максимум этого объема или максимум функции `f(x, y, z) = xyz`
Уравнение связи. Здесь, как я полагаю, нам надо описать радиус шара, но так как нам дан еще и параллелепипед, то я подумал, что как-то через стороны надо выражать этот объем. Думаю, что уравнение связи должно быть таким
`(4/3) * pi * (sqrt {x^2 + y^2 + z^2})^3 = (4/3) * pi * R^3`
В итоге, функция Лагранжа, будет выглядеть так:
`L = xyz + \lambda * ((4/3) * pi * (sqrt {x^2 + y^2 + z^2})^3 - (4/3) * pi * R^3)`
Это верно? Или я что-то не так делаю? Просто если так, то там такие некрасивые получаются уравнения в системе... Лучше бы это было неправдой, чем возиться со всем этим решением. Заранее спасибо))

@темы: Математический анализ

13:07 

Сделать рисунок поверхности второго порядка

IWannaBeTheVeryBest
Всем привет. У меня было задание привести квадратичную форму к каноническому виду.
`5x^2 - 2y^2 -2yz - 2z^2 = 0`
К каноническому виду я привел. Вышло что-то вроде
`5x^2 + 2sqrt{5}(1 - sqrt{5})y^2 - 2sqrt{5}(1 + sqrt{5})z^2 = 0`
Это конус, и как его изобразить, даже несмотря на такие кривые значения, я представляю. Можно сделать, собственно, примерно. Просто ввести обозначения и сказать какая полуось какое расстояние имеет. Но в задании сказано: "Сделать рисунок, интерпретируя ортогональное преобразование координат как некоторый поворот системы координат в `R^3`".
Приводил к каноническому виду так:
1. Нашел собственные значения матрицы квадратичной формы
2. Нашел собственные векторы
3. Нормировал их. (в данном случае я забыл это сделать, но это не трудно. все равно вышел диагональный вид)
4. Составил матрицу `B` из найденных собственных векторов (по столбцам)
5. Произвел преобразование `B^T*A*B`
6. Получил в итоге такую каноническую форму.
Что значит "интерпретировать, как поворот системы координат"? Я думал, что надо изобразить поверхность, которая дана вначале и которую я получил в конце. Поверхность будет та же самая, но находится эти поверхности будут в разных точках пространства. Что делать?

================================

В общем-то я привел ее к каноническому виду
`5x^2 - 2y^2 - 2yz - 2z^2 = 0 -> 5x^2 - 3y^2 - z^2 = 0`
Но в задании сказано: "Сделать рисунок, интерпретируя ортогональное преобразование координат как некоторый поворот системы координат в `R^3`"
Что это значит?
Сорри за повтор. Просто тогда я не поставил тему, да и привел не так к каноническому виду.

@темы: Аналитическая геометрия, Линейная алгебра

16:33 

Задача на доказательство

IWannaBeTheVeryBest
В n-мерном евклидовом пространстве дано подпространство `L` и линейно независимые векторы `a_1, \dots, a_p`. Обозначим `a'_1, \dots, a'_p` ортогональные проекции этих векторов на `L`. Доказать, что
`det \Gamma (a_1, \dots, a_p) >= det \Gamma (a'_1, \dots, a'_p)`
Я думал вводить еще вектора `a''_1, \dots, a''_p`, как вектора ортогональных дополнений. Потом указать, что
`\Gamma (a) = \Gamma (a') + \Gamma (a'')`
Обозначил коротко, без перечисления. Просто как обозначения систем векторов.
Потом если взять детерминанты во втором уравнении и подставить в первое, то получится, что
`det \Gamma (a'') >= 0`, что в общем-то верно, c одной стороны, ведь матрица Грама положительно определена, но мне кажется, что это слишком коротко и я тут где-то ошибся. Сомнения мои от того, что матрица Грама не может быть нулевой. Ну вернее иметь детерминант нулевой.
Может как-то надо в другом направлении двигаться?

@темы: Линейная алгебра

14:30 

Скалярное произведение

IWannaBeTheVeryBest
При каких условиях на матрицу квадратную матрицу P размерностью NxN данная функция является скалярным произведением в пространстве матриц МхN
`F(X, Y) = trX^TPY`
В ответах сказано, что она должна быть положительно определенной. Во-первых, почему она должна быть симметричной? Ведь, если я правильно понимаю, определенность определяется только у симметричных матриц. Я так понимаю здесь важен критерий `P^T = P`. Во-вторых я не совсем понимаю, как на матрицах проверять признаки. Например
`F(X, Y) = F(Y, X) => trX^TPY = trY^TPX`
Здесь наверняка есть какое-то свойство матриц. Может быть матрицы между собой можно как-то транспонировать? Ведь в итоге след последней матрицы не поменяется. Хотя я могу ошибаться.
Другие свойства попытаюсь сам, но если что спрошу тут))
И да, не подскажете кое-что по технической части? Касается скрипта, который отображает формулы. При каждом новом запуске хром блокирует его. Я смотрел в инете решения проблем, но вдруг тут у кого-то было что-то подобное? Может быть тут кто-то решил эту проблему, не залезая в реестр? Причем у меня на ноуте стоит линукс убунту. И, как ни странно, там этот скрипт спокойно живет. На ПК стоит лицуха винда 7.

@темы: Матрицы

11:11 

Ортогональная проекция 2.

IWannaBeTheVeryBest
Задание из типового расчета.
Вещественное евклидово пространство `X` реализовано как `R^5` со стандартным скалярным произведением. Подпространство `L` евклидова пространства `X` задано как линейная оболочка векторов
`a_1 = (-2, 1, -1, -5, -1)^T, a_2 = (1,-1,1,3,0)^T, a_3 = (1,3,-1,1,2)^T.`
Задан также фиксированный вектор `x`
`x = (1,-2,2,4,-1)^T`
Найти ортогональную проекцию `x_L` вектора `x` на подпространство `L` и ортогональную составляющую `x_M` этого же вектора.
Решение получить двумя способами:
Первый способ.
1)Найти ортонормированный базис подпространства `L`;
2)Написать явный вид ортогонального проектора `P_L` на подпространство `L`;
3) Вычислить с помощью `P_L` ортогональную проекцию `x_L`, а затем и `x_M` (как разность `x_M = x - x_L`)
Второй способ.
1) Найти неортонормированный базис подпространства `L` (анализируя структуру `L` как линейной оболочки векторов `a_1, a_2, a_3`);
2) С помощью представления `x = x_L + x_M` (где `x_L` разложено по базису `L`),
3) Составить и решить систему линейных уравнений для определения коэффициентов разложения `x_L` по базису `L`.

Знаю я тут такой способ.
`x_L = \alpha_1*a_1 + \alpha_2*a_2 + \alpha_3*a_3`
`x = \alpha_1*a_1 + \alpha_2*a_2 + \alpha_3*a_3 + x_M`
Дальше скалярно умножаю уравнение на вектора оболочки и получаю 3 уравнения в системе. Отсюда вытекает `x_L` ну и `x_M`.
К какому из этих двух он относится? Я вроде как решаю систему уравнений (второй способ), с другой стороны я вычисляю `x_M = x - x_L` - первый способ.

Если по логике, то это второй больше способ. Я не ищу ортонормированный базис.
Кстати я решил таким способом и у меня `x_M` равен нулевому вектору. Такое возможно?
Первый способ.
Ортонормированный базис я найду методом ортогонализации, затем нормирую.
Что там про явный вид ортогонального проектора?
Там в методе ортогонализации есть оператор проекции, вид которого я знаю, но, боюсь, это не то. Как с помощью проектора вычислять ортогональную проекцию? Может ответ банален и прост, но я что-то не помню, чтобы делал это.

@темы: Линейная алгебра

13:58 

Жорданова форма матрицы

IWannaBeTheVeryBest
Такое ощущение у меня, что я вроде как знаю теорию, а вроде и нет...
Найти Жорданову форму матрицы
$A = \left(\begin{array}{c c c}-13/4 & 1/4 & 1/2 \\ -1/4 & -11/4 & 1/2 \\ 0 & 0 & -3 \end{array}\right)$
Находим детерминант матрицы
$A = \left(\begin{array}{c c c}-13/4 - \lambda & 1/4 & 1/2 \\ -1/4 & -11/4 - \lambda & 1/2 \\ 0 & 0 & -3 - \lambda \end{array}\right)$
И приравниваем его к 0. Находим корни. Уже посчитал. `\lambda = -3` (кр.3)
Дальше подставляем это значение в матрицу и расширяем ее нулями. Ну просто мы же по идее подставляем это значение в характеристическое уравнение.
Как расширять тут матрицу я не знаю. Ну можно пока обойтись. Получится матрица
$A = \left(\begin{array}{c c c}-1/4 & 1/4 & 1/2 \\ -1/4 & 1/4 & 1/2 \\ 0 & 0 & 0 \end{array}\right)$
Она же
$A = \left(\begin{array}{c c c}-1/4 & 1/4 & 1/2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$
Находим вектор.
`x_2 = C_2`, `x_3 = C_3` (индексы те же поставил, чтобы не запутаться)
`x_1 = C_2 + 2C_3`
Вектор можно такой построить
`\xi_1 = C_2(1, 1, 0)^T + C_3(2, 0, 1)^T`
Теперь нахожу присоединенный. То есть, как я понимаю, в расширении матрицы теперь должен стоять какой-то из этих двух векторов, предположим первый. Просто второй сомнительно туда ставить.
У матрицы также останется только верхняя строчка, только расширенная единицей. Добавится новый вектор
`\xi_3 = (-4, 0, 0)^T`
Где я ошибся? Из этих же векторов составляется матрица, скажем, S, благодаря которой получается Жорданова форма
`J = S^(-1)AS`

@темы: Матрицы, Линейная алгебра

19:18 

Переход от базиса к базису.

IWannaBeTheVeryBest
В общем-то я имею представление, как составлять матрицу перехода. Ну вот у меня дан такие базисы.
`g_1 = 1/sqrt(10) * (1, 1, -2sqrt(2))^T`, `g_2 = 1/(2sqrt(2)) * (2, -2, 0)^T`, `g_3 = 1/sqrt(10) * (2, 2, sqrt(2))^T` - ортонормированный.
`a_1 = (1, 1, -2sqrt(2))^T`, `a_2 = (3, -1, -2sqrt(2))^T`, `a_3 = (4, 2, -sqrt(2))^T` - не ортонормированный.
И мне надо выписать матрицу перехода от базиса `a` к базису `g`.
Все довольно просто с этими базисами. Ну было до этого момента.
`a_1 = \alpha_1 * g_1 + \alpha_2 * g_2 + \alpha_3 * g_3`
`a_2 = \alpha_4 * g_1 + \alpha_5 * g_2 + \alpha_6 * g_3`
`a_3 = \alpha_7 * g_1 + \alpha_8 * g_2 + \alpha_9 * g_3`
Найденные "альфы" записываются в столбик и образуется матрица перехода. Только вот не совпадает она с ответом у меня. Решать такие кривые системы не стал. Юзал вольфрам. Есть вероятность того, что я не так мог написать что-то в вольфраме. Но боюсь проблема в том, что я перехожу от не ортонормированного базиса, к ортонормированному.
В общем-то это вторая половина задачи. Найденные вектора базиса `g` сверены по ответам. Найдены путем ортогонализации от базиса `a`.

@темы: Линейная алгебра

11:26 

Ортогональная проекция полинома.

IWannaBeTheVeryBest
Найти ортогональную проекцию полинома `35t^4 + 15t^3 - 15t^2 - 8t + 4` на подпространство полиномов степени не выше 2.
Скалярное произведение определено как `F(p, q) = sum_(i = 0)^(n) a_i * b_i`.
Когда задача была с векторами, то там было все понятно. `x = x' + x''`, где `x'` - ортогональная проекция на `L`
Я просто брал вектора, на которые было натянуто подпространство, и с ними составлял систему уравнений. А вот что тут сделать - не ясно.
Если формула сохраняться должна та же, только для полиномов, то тогда, как я предполагаю, p'(t) - это как раз подпространственный, если так можно выразиться, полином. Именно он будет степени не выше 2. Тогда `35t^4 + 15t^3 - 15t^2 - 8t + 4 = a_1t^2 + a_2t + a_3 + p''(t)`
Дальше, на примере векторов, я расписывал `x'`. То есть, если проводить аналогию, то `a_1t^2 + a_2t + a_3 = 35t^4 + 15t^3 - 15t^2 - 8t + 4 - p''(t)`.
Только вот с векторами-то я это все расписывал как линейную комбинацию. Ну вектор `x'` у меня составлял линейную комбинацию. Я домножал уравнение на данные вектора в линейной оболочке скалярно и находил коэффициенты. Тут такого нет.

@темы: Линейная алгебра

20:39 

Ортогональная проекция.

IWannaBeTheVeryBest
Вот такая задача.
Подпространство L - линейная оболочка векторов `a_1, ... , a_k`. В ортонормированном базисе заданы координатные столбцы этих векторов и координатный столбец `\xi` вектора `x`. Найти координатные столбцы `\xi'` и `\xi''` ортогональных проекций вектора `x` на `L` и `L^\perp`.
`a_1 = (2, 3, 0, 1)^T`, `a_2 = (0, 5, -2, -1)^T`, `\xi = (6, 0, 4, 2)^T`.
Ну и идея моя в том, чтобы составить систему линейных уравнений с двумя уравнениями, чтобы получить два ортогональных вектора из ортогонального подпространства. Ортогональное дополнение короче говоря. Таким образом я получу 2 вектора плюсом. Дальше, по формуле `\xi' = \xi - \xi''` я найду ортогональную проекцию на L. Просто я подразумеваю, что один из этих двух векторов можно взять за `\xi''` (или нет?) и спокойно дорешать. И я так и делал пока, опять же, не посмотрел в ответы. Причем меня смущает тот факт, что при решении такой системы, получается сразу 2 ортогональных вектора из ортогонального подпространства, хотя по теории такой вектор может только однозначно расписываться в сумму двух других.
Была идея получить такой вектор с помощью решения уравнения из линейных комбинаций двух данных векторов и двух тех, которые получаются. Ну типа
`\xi = \alpha * a_1 + \beta * a_2 + \gamma * x_1 + \delta * x_2`, где `x_1` и `x_2` найденные векторы, в результате решения системы.

IWannaBeTheVeryBest, не забывайте указывать @темы.

@темы: Линейная алгебра

15:24 

Ортогональное дополнение.

IWannaBeTheVeryBest
Вот такая вот задачка.
Подпространство L задано как линейная оболочка векторов, имеющие в ортонормированом базисе координаты:
`(3, -15, 9, 1)^T` и `(3, -6, -3, 2)^T`.
Найти: 1)Матрицу системы уравнений, определяющую `L^\perp`
2) Базис в `L^\perp`
Как я думал подойти. Ну вообще может я не то хочу находить, но по учебнику так обозначается ортогональное дополнение вроде как.
Каждый вектор из ортогонального дополнения ортогонален каждому вектору из изначального подпространства, ведь так?
Ну вот я как бы и попытался составить систему уравнений из двух уравнений с четырьмя неизвестными, для того чтобы найти третий вектор, перпендикулярный двум этим. Не вышло. Потом до меня дошло, что надо проверить на ортогональность данные вектора. Оказалось, что они не ортогональны друг другу, значит найти третий вектор, перпендикулярный двум этим не получится. Может найти сначала какой-то вектор, перпендикулярный какому-то из этих двух? Я просто как-то сильно не въезжаю. Или надо сначала найти базис в L...

@темы: Линейные преобразования, Линейная алгебра

11:36 

Скалярное произведение

IWannaBeTheVeryBest
1) В пространстве многочленов степени <= 3 со стандартным скалярным произведением задан треугольник со сторонами t, t^3 и t - t^3.
Найти углы треугольника и длины его сторон.
Не могу понять, как находить скалярное произведение полиномов? Блин, в учебнике рассказано про Евклидовы пространства, как пространства с векторами. Действия с векторами я понял. Тут даны полиномы. Просто ступор.
2) В линейном вещественном пространстве даны два скалярных произведения `(x, y)_1` и `(x, y)_2`. Доказать, что функция `(x, y) = \lambda * (x, y)_1 + \mu * (x, y)_2`также будет являться скалярным произведением для любых положительных `\lambda` и `\mu`.
Здесь не понятно почему именно для положительных сказано. Да и вообще как доказывать? Ну я могу сказать, что сумма скалярных произведений - это скалярное произведение, так как... Ну и там по аксиомам пройтись типа коммутативности (кстати не ясно как дистрибутивность доказывается, когда даны только 2 элемента) и т.д.
Помогите плз.

@темы: Линейная алгебра

14:11 

Остаточный член в формуле Тейлора

IWannaBeTheVeryBest
Всем привет. Помогите пожалуйста разобраться с остаточным членом в форме Шлемильха и Роша.
Читаю я тут Фихтенгольца и смотрю как там остаточные члены выводятся. Не в форме Пеано.
Будет возможно долго, но пожалуйста прочтите краткий экскурс, кто не в курсе как оно по Фихтенгольцу)) Вопрос у меня довольно простой.
Ну значит там говорится...
1) рассматривается какой-то отрезок `[x_0, x_0 + H]`, ну и на нем существуют
и непрерывны первые n производных функции `f(x)` (`f'(x), f''(x), ... , f^(n)(x)`), а также существует и конечна `n+1` производная.
2) Дальше в силу `r_n(x) = f(x) - p(x)` вытекает:
`r_n(x) = f(x) - f(x_0) - ((f'(x_0))/(1!)) * (x - x_0) - ((f''(x_0))/(2!)) * (x - x_0) - dots - ((f^(n)(x_0))/(n!)) * (x - x_0)`
3) Потом, фиксируя определенное значение на данном промежутке, вводится вспомогательная функция:
`varphi(z) = f(x) - f(z) - ((f'(z))/(1!)) * (x - z) - ((f''(z))/(2!)) * (x - z) - dots - ((f^(n)(z))/(n!)) * (x - z)`, где `z in [x_0, x]`
Также на `(x_0, x)` существует `varphi'(z) = -((f^(n)(z))/(n!)) * (x - z)`
4) Вводится произвольная функция `psi(z)`, которая никак не определяется, только со свойствами: непрерывна на промежутке `[x_0, x]` и
имеет ненулевую производную на `(x_0, x)`.
Почти приехали))
5) Применяем формулу Коши к `varphi(z)` и `psi(z)` получаем:
`(varphi(x) - varphi(x_0))/(psi(x) - psi(x_0)) = (varphi'(c))/(psi'(c))`, где `x_0 < c < x` или `c = x_0 + theta(x - x_0)`, где `0 < theta < 1`
6) В силу того, что `varphi(x) = 0, varphi(x_0) = r_n(x), varphi'(c) = -(f^(n+1)(c))/(n!) * (x - c)^n` мы получаем
`r_n(x) = (psi(x) - psi(x_0))/(psi'(c)) * (f^(n+1)(c))/(n!) * (x - c)^n`
И вот теперь получается так, что подставляя вместо `psi(z)` любые, удовлетворяющие условиям функции, мы получаем различные формы дополнителного члена.
Внимание вопрос.
Пусть `psi(z) = (x - z)^p,p>0` => `psi'(z) = -p(x - z)^(p-1), x_0 < z < x`
Тогда `r_n(x) = (-(x-x_0)^p)/(-p(x-c)^(p-1)) * (f^(n+1)(c))/(n!) * (x - c)^n`
Это как так получилось-то? Ну я про последние строчки. Как мы так подставляем, что получается множитель `(-(x-x_0)^p)/(-p(x-c)^(p-1))`?
Причем понятно как получился знаменатель примерно. Он как производная выглятит. А вот как числитель? Такое ощущение складывается, что `psi(x) = 0`.

@темы: Математический анализ

09:32 

Дискретная математика.

IWannaBeTheVeryBest
Всем привет. Не нашел нигде, кто бы мог решить вот эти 2 задачки или хотя-бы поставить на правильный путь.
1. "Доказать, что если P - силовская подгруппа в G, то нормализаор нормализатора P равен нормализатору P"
Ну начну с того, что знаю.
Порядок конечной группы - это мощность или количество элементов этой группы. Пусть `G` — конечная группа, а `p` — простое число, которое делит порядок `G`. Подгруппы порядка `p^t` называются p-подгруппами. Выделим из порядка группы `G` примарный делитель по `p`, то есть `|G| = p^ns`, где `s` не делится на `p`. Тогда силовской p-подгруппой называется подгруппа `G`, имеющая порядок `p^n`.
Определение нормализатора группы
`N_G(P) = {g in G | gP = Pg}`
Ну я это понимаю как множество всех элементов в G которые коммутируют со всеми элементами в P.
С чего бы начать? Я просто очень слабо в этом соображаю.
Ну вот предположим, что G - группа, с какими-то рандомными элементами.
Скажем, что мощность или порядок G = 90. Простое число p = 3 делит порядок G = 3^2 * 10, где 10 не делится на 3. Таким образом у нас есть 3-подгруппа силовская, имеющая порядок 3^2. Так вот, нам надо опеделится с тем, что такое этот номализатор скажем 3-группы. Так что это? Ну это какое-то множество элементов, которые коммутируют со всеми элементами нашей 3-группы. Нормализатор нормализатора в моем представлении - это и есть наша 3-группа. Вот тут то и начинаются странности


2. "Пусть S - полугруппа эндоморфизмов End V линейного пространства V (умножение - композиция эндоморфизмов). Доказать, что любой идеал в S - главный. (т.е. порождаетсяодним элементом)"
Плииииз хоть кто-нибудь, хоть немного.

@темы: Дискретная математика, Теория групп

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная