• ↓
  • ↑
  • ⇑
 
Записи пользователя: IWannaBeTheVeryBest (список заголовков)
19:50 

Вычислить матрицу ортогонального проектирования

IWannaBeTheVeryBest
Вычислить матрицу ортогонального проектирования пространства `E_3` на подпространство `L`, если `L` - плоскость, натянутая на вектора
`x = (-1,1,-1)`
`y = (1,-3,2)`
Верно ли я понимаю, что задачу можно переформулировать как поиск матрицы оператора проектирования `P:E_3 -> L`?
Ну вот по сути, когда я находил раньше находил матрицы операторов, я смотрел на действие оператора на базисных векторах, смотрел какими они становятся в `L`, и записывал их в матрицу. Ну в общем просто записывал образы базисных векторов в матрицу и все.
Только тут плоскость какая-то неудобная. В ней лежат все вектора вида `ax + by`. То есть каждый из базисных векторов должен стать представимым в виде данной линейной комбинации. Но я не могу понять, куда конкретно они будут переходить? Вот если бы это была просто какая-то плоскость типа `z = 0`, то я бы взял трехмерную единичную матрицу и занулил соответствующую единицу.
Может надо как-то развернуть сначала систему координат как-то, чтобы получилась данная плоскость, потом подействовать на нее обычной матрицей проектирования и повернуть обратно? Могу найти ортогональный вектор двум данным `z`, затем перевести `x, y, z` в `e_1, e_2, e_3` соответственно, получить матрицу этого преобразования, воспользоваться стандартной матрицей проектора и воспользоваться обратным преобразованием. Правда заморочек много. Может проще можно?

@темы: Линейная алгебра

23:07 

Внешнее произведение q-форм

IWannaBeTheVeryBest
Вообще это произведение определяется как тензорное произведение этих форм, альтернированных по всем индексам и домноженное на `(p + q)!/(p!*q!)`
Задание такое. Найти внешнее произведение форм, заданных строками
`C_1 = (1,1,2,2)`
`C_2 = (1,1,1,3)`
`C_3 = (1,1,1,2)`
Ну, насколько я понял, каждая из этих строк является тензором типа `(0,1)`. Если я найду тензорное произведение двух из них, то я автоматом получу тензор типа `(0,2)`
Альтернирование и домножение на константу не меняет типа тензора. Соответственно, когда я домножу полученный тензор на третью внешнюю форму тензорно, то это будет уже тензор типа `(0,3)`. Однако результатом перемножения этих форм является тоже строчка `1xx4`. Это как?

@темы: Линейная алгебра

16:39 

Альтернирование тензора

IWannaBeTheVeryBest
Как производится альтернирование `a_{[k l]}^{[ij]}` тензора `a_{k l}^{ij}`? Я правильно понимаю, что сначала нужно получить тензор `a_{k l}^{[ij]}`, а потом уже его альтернировать по нижним индексам и получить `a_{[k l]}^{[ij]}`? Просто я решил таким образом поступить, а ответ не сошелся.
Тензор `a_{kl}^{ij} = `

Извините, что картинкой. Просто такую "байду" формулой изобразить будет сложно, я думаю.
Решаю так. Сначала альтернирую по верхним индексам. Там где совпадают `ij`, будет 0. Не 0 будут во всех слоях на побочных диагоналях.
Ну логика простая
1) `i = k = l = 1; j = 2`
`a_{11}^{[12]} = 1/2*(a_{11}^{12} - a_{11}^{21}) = 3`
По логике
`a_{11}^{[21]} = -3`
Дальше просто повторяю эти действия для каждого слоя. То есть просто вычитаю элементы на побочной диагонали, ставлю это число на место `12` и то же число с обратным знаком на место `21`.
2) `a_{22}^{[12]} = -a_{22}^{[21]} = 1/2*(a_{22}^{12} - a_{22}^{21}) = -4`
Таким образом я определил значения слоев `a_{11}^{ij}` и `a_{22}^{ij}`
В итоге у меня получился тензор, где
`a_{12}^{ij} = a_{11}^{ij}`
`a_{21}^{ij} = a_{22}^{ij}`
Назовем его тензором `b_{kl}^{ij}`
Вот у меня скорее всего где-то здесь уже ошибка. Дело в том, что
`b_{[12]}^{12} = -b_{[21]}^{12} = 1/2*(b_{12}^{12} - b_{21}^{12}) = 1/2*(3 - (-4)) = 7/2`
Получилось у меня `+-7/2` на побочной диагонали двух слоев. А в ответах там `+-1/2` на тех же местах, и немного с другим расположением знаков.

@темы: Линейная алгебра

23:49 

Конформные отображения. ТФКП

IWannaBeTheVeryBest
Область
`|z - 1| > 1`
`|z| < 2`
Надо отобразить с помощью функции `w = e^{2pi*i*(z/(z - 2))}`
Вообще, образы кривых и областей я обычно находил, решая в лоб. Просто записывал уравнения кривых в комплексной форме, потом выражал `z` через `w` и подставлял в уравнения кривых. Получал новые кривые. Если надо было отобразить область, ограниченную этими кривыми, то я еще брал точку из этой области и также смотрел, в какую точку она переходит, тем самым определяя куда перешла область.
Тут как-то решать в лоб не очень. Логарифмы будут вылезать и я не уверен, что в конце смогу сделать картинку области по полученным уравнениям кривых.
Почитал в учебниках, там показано, куда отображаются отрезки, полосы... А вот про окружности ничего не нашел. Как отображать окружности экспонентой?

@темы: ТФКП

20:41 

Построить резольвенту Фредгольма

IWannaBeTheVeryBest
Для заданного ядра `K(s,t)` интегрального оператора, заданного на отрезке `[a, b]` построить резольвенту Фредгольма как для вырожденного ядра.
В примере дано
`K(s,t) = s - t;` `a = 0;` `b = 1;`
Рассматривается интегральное уравнение
`f - Mf = h`, где
`(Mf)(s) = \lambda * int_{a}^{b}K(s,t)*f(t)dt`
Уравнение переписывается в виде
`f(s) = h(s) + \lambda*int_{0}^{1}(s-t)f(t)dt = h(s) + \lambda*s * int_{0}^{1} f(t) dt - \lambda * int_{0}^{1} t*f(t)dt`
Вводится обозначение
`c_{1} = int_{0}^{1} f(t) dt;` `c_{2} = int_{0}^{1}t*f(t) dt` (1)
Отсюда
`f(s) = h(s) + \lambda*sc_1 - \lambdac_2` (2)
Вот дальше написана фраза и выполнены действия, которых я вообще не понял.
Подставим ВЫРАЖЕНИЕ (2) в равенства (1). Получим систему уравнений для `c_1` и `c_2`
`(1 - 1/2\lambda)c_1 + \lambda*c_2 = int_{0}^{1} h(t) dt`
`-1/3\lambda*c_1 + (1 + 1/2\lambda)*c_2 = int_{0}^{1} t * h(t) dt`
Каким образом? Что это за "ловкость рук"? Вообще не понял, что произошло. Куда s делось? Почему (2) - это выражение? Где `f(s)`?

@темы: Функциональный анализ

13:08 

Интегрирование функции КП. Вычеты

IWannaBeTheVeryBest
`int_{|z - 1| = 1} sin(pi*z)/((z^2 - 1)^2)dz`
В данном случае, у меня две существенно особые точки. И только одна из них входит в контур. Понимаю, что надо выудить из ряда Лорана `c_{-1}` член, но не очень понимаю. Надо в любом случае раскладывать полностью всю функцию в ряд Лорана? Не зависимо от того, сколько существенно особых точек и сколько из них входят в контур? Если так, то надо разбить дробь на простые
`1/((z^2 - 1)^2) = 1/((z - 1)^2(z + 1)^2) = 1/4(1/(z + 1) + 1/((z + 1)^2) - 1/(z - 1) + 1/((z - 1)^2))`
И дальше, насколько я понимаю, нам надо раскладывать функцию по степеням `z - 1`.
Поэтому, перед разложением, мне надо преобразовать две первые дроби
`1/(1 + z) = 1/(1 - (z - 1)/(-1) + 1) = 1/2(1/(1 - (z - 1)/(-2)))`
`1/(1 + z)^2 = 1/4(1/(1 - (z - 1)/(-2)))^2`
Для второго случая у меня вроде как есть разложение.
Дальше синус... Ну наверное можно воспользоваться формулой приведения
`-sin(pi(z - 1)) = -sin(pi*z - pi) = sin(pi*z)`
Ну а для
`-sin(pi(z - 1))` разложение есть.
В верном направлении иду? Пока не буду раскладывать. Вдруг ошибаюсь))

@темы: ТФКП

13:26 

Привести матрицу к диагональному виду

IWannaBeTheVeryBest
Я тут решил вспомнить немного материал из прошлого. Как привести матрицу к диагональному виду? Ну скажем такую
`A = ` $\left(\begin{array}{c c}1 & 2 \\ 3 & 4 \end{array}\right)$
Пусть передо мной задача найти n-тую степень матрицы. Очевидно, ее надо привести к диагональному виду и возвести каждый элемент на диагонали в n-тую степень. Можно использовать алгоритм приведения ее к Жордановой форме. Но почему ее нельзя свести к диагональному виду путем элементарных преобразований строк? Скажем, если `L_n` - это n - тая строка, то `L_2 - 3*L_1` и затем `L_1 + L_2`? И будет матрица
`A' = ` $\left(\begin{array}{c c}1 & 0 \\ 0 & -2 \end{array}\right)$
В чем подвох? Я похоже не понимаю, что такое диагональный вид матрицы :D

@темы: Линейная алгебра

22:56 

Решение волнового уравнения

IWannaBeTheVeryBest
Не могу найти, как решить уравнение с условиями
`9u_{t t} = u_{x x}`
`u_x(0, t) = u_x(2, t) = 0`
`u(x, 0) = x, 0<=x<=1; u(x, 0) = 1, 1<=x<=2`
`u_t(x, 0) = 0`
Везде, что я только не смотрел, везде рассматриваются примеры, где во втором условии данной системы фигурируют сами функции `u`, а не их производные. Вообще не знаю, что с ними делать.

@темы: Дифференциальные уравнения, Уравнения мат. физики

21:22 

Привести к каноническому виду ДУ

IWannaBeTheVeryBest
Привести к каноническому виду ДУ в каждой из областей, где его тип сохраняется.
`sgn(y)u_{x\x} + 2u_{xy} + u_{yy} = 0`
`D/4 = 1 - 4sgn(y)`
Думал сам смогу, но что-то запоролся.
Рассматриваем 2 случая
`sgn(y) = -1` здесь уравнение будет гиперболично.
`u_{x x} - 2u_{xy} - u_{yy} = 0`
Составляем характеристическое уравнение.
`dy^2 + 2dxdy - dx^2 = 0`
Решаем относительно `dy`
`D/4 = dx^2 + dx^2 = 2dx^2`
`dy = -dx(1 + sqrt(2))`
`y = -(1 + sqrt(2))x + C`
`dy = -dx(1 - sqrt(2))`
`y = (sqrt(2) - 1)*x + C`
Делаем замену `\xi = y + (1 - sqrt(2))x`; `\eta = y + (1 + sqrt(2))x`
`u_{x x} = u_{\xi \xi} * \xi_x^2 + 2u_{\xi \eta} * \xi_x * \eta_x + u_{\eta \eta} * \eta_x^2 + u_{\xi} * \xi_{x x} + u_{\eta} * \eta_{x x} = `
`= u_{\xi \xi} * (1 - sqrt(2))^2 - 2u_{\xi \eta} + u_{\eta \eta} (1 + sqrt(2))^2`
`u_{y y} = u_{\xi \xi} * \xi_y^2 + 2u_{\xi \eta} * \xi_y * \eta_y + u_{\eta \eta} * \eta_y^2 + u_{\xi} * \xi_{y y} + u_{\eta} * \eta_{y y} = `
`= u_{\xi \xi} + 2u_{\xi \eta} + u_{\eta \eta}`
`u_{x y} = u_{\xi \xi} * \xi_x * \xi_y + u_{\xi \eta}(\xi_x * \eta_y + \xi_y * \eta_x) + y_{eta \eta} * \eta_x * \eta_y + u_{xi} * \xi_{x y} + u_{\eta} * \eta_{x y} = `
`= u_{\xi \xi}(1 - sqrt(2)) + 2u_{\xi \eta} + u_{\eta \eta} (1 + sqrt(2))`
Подставляя в уравнение я получил
`8u_{\xi \eta} = 0`
Это норма?
`sgn(y) = 1` здесь уравнение будет параболично.
`u_{x x} + 2u_{xy} + u_{yy} = 0`
Хар. ур-е
`dy^2 - 2dxdy + dx^2 = 0`
`(dy - dx)^2 = 0`
`y = x + C` (кр. 2)
Дело в том, что если я делаю замену `\xi = \eta = y - x`, то я получу равенство `0 = 0` в конце. Поэтому я думаю, что замену надо наверное какую-то другую делать.

@темы: Уравнения мат. физики, Дифференциальные уравнения

18:35 

Привести к каноническому виду ДУ

IWannaBeTheVeryBest
Привести к каноническому виду ДУ в каждой из областей, где его тип сохраняется.
`sgn(y)u_{x\x} + 2u_{xy} + u_{yy} = 0`
`D/4 = 1 - 4sgn(y)`
Ну тут 3 случая
`sgn(y) = -1` здесь уравнение будет гиперболично.
`sgn(y) = 1` здесь уравнение будет эллиптично.
А что со случаем `sgn(y) = 0`? Ведь тогда у нас останется уравнение `2u_{xy} + u_{yy} = 0`. Или оно тоже будет гиперболично?
Если да, то можно приводить к каноническому виду не 3 раза, а 2. Просто в одном случае я буду писать `sgn(y)`, а в другом конкретно рассмотрю случай `sgn(y) = 1`

@темы: Дифференциальные уравнения, Уравнения мат. физики

19:29 

Небольшие нюансы ТФКП

IWannaBeTheVeryBest
Такие 2, наверняка, простых вопроса.
1) По сути у квадратного уравнения должно быть 2 корня. Но вот как быть, если дискриминант - комплексное число? Ведь корень из такого дискриминанта даст нам 2 решения. И когда мы будем решать уравнение, то получим
`z_{1,2} = (-b +- sqrt(D))/(2a)`, где `sqrt(D)` дает 2 решения. Так получается, что корня как бы 4 у этого уравнения? Или я неправ?
2) Возведение числа в степень. Ну например `(1 + i)^2` По формуле Муавра,
`(1 + i)^2 = 2 * (cos(pi/2) + isin(pi/2)) = 2i`
Ну в принципе можно было и в прямую раскрыть скобки. Однако если делать через экспоненту
`e^(2Ln(1 + i)) = e^(2(ln(sqrt(2)) + i(pi/4 + 2pik))) = 2 * e^i(2(pi/4 + 2pik)) = 2 * (cos(pi/2 + 4pik) + isin(pi/2 + 4pik))`
В принципе, в силу периодичности синуса и косинуса ответы одинаковые получились. Но меня как-то все равно коробит от того, что в одном случае получился однозначный ответ, а в другом - многозначный. Или я неверно интерпретировал формулу Муавра и там тоже добавляется период? Или я просто зря заморачиваюсь тут?))

@темы: ТФКП

20:13 

Найти область точек на комплексной плоскости, заданной условиями

IWannaBeTheVeryBest
`|z - 1|/|z + 1| <= 1;` `0<=Im(z)<=1`
Вообще что-то не знаю, с какой стороны подойти. Знаю только 2 способа
1) Через раскрытие `z = x + iy`. Дальше можно выделить действительную и мнимую части, но не уверен, что это к чему-то приведет. Там обратно не перейти к `z`, чтобы получилось что-то вроде `z - z_0 <= R`
2) Через другие формы комплексного числа. Например через тригонометрию. Может там что получится. Но похоже там и в знаменателе и в числителе будут `r` и `\phi`
Не скажете, в каком направлении тут думать? Может второе условие неслучайно?

@темы: ТФКП

15:07 

Норма пространства

IWannaBeTheVeryBest
Можно ли ввести норму следующим образом
`X = C[a, b],` `\left \|| x \right \||`` = |max_{t \in [a, b]} x(t)|`
Одна из аксиом нормы
`\forall x \in X : ``\left \|| x \right \||` `>= 0, \left \|| x \right \|| = 0 <=> x = 0`
Я думаю, что нельзя. Ну например `x(t) = sin(t) - 1,` `t \in [0; pi]`
`x \neq 0`, однако норма = 0.
Это верно? Просто вроде как другие аксиомы нормы тут будут выполнены в силу аксиом модуля и поэтому к другим аксиомам не прицепится.

@темы: Линейная алгебра, Функциональный анализ

20:34 

Переход к новым переменным в выражении с частными производными

IWannaBeTheVeryBest
Пусть дана функция `u(x, y)` и я хочу перейти к новым переменным `\xi` и `\eta`. Тогда
`(du)/(dx) = (du)/(d\xi)*(d\xi)/(dx) + (du)/(d\eta)*(d\eta)/(dx)`
`(du)/(dy) = (du)/(d\xi)*(d\xi)/(dy) + (du)/(d\eta)*(d\eta)/(dy)`
Круглые буквы `d` не знаю как ставить. Пусть будут обычные. Но речь про частные производные. Дальше мне не понятно, почему
`(d^2u)/(dx^2) = (d^2u)/(d\xi^2)*((d\xi)/(dx))^2 + 2(d^2u)/(d\xid\eta)*(d\xi)/(dx)*(d\eta)/(dx) + (d^2u)/(d\eta^2)*((d\eta)/(dx))^2 + (du)/(d\xi)*(d^2\xi)/(dx^2) + (du)/(d\eta)*(d^2\eta)/(dx^2)`
Как-то странно. Нужно вот так же по-сути применять
`(d^2u)/(dx^2) = d/(dx)((du)/(dx)) = d/(dx)((du)/(d\xi)*(d\xi)/(dx) + (du)/(d\eta)*(d\eta)/(dx))`
`((du)/(d\xi)*(d\xi)/(dx) + (du)/(d\eta)*(d\eta)/(dx)) = f`
`(df)/(dx) = (df)/(d\xi)*(d\xi)/(dx) + (df)/(d\eta)*(d\eta)/(dx)`
Или я ошибаюсь где-то? Может просто посчитал неправильно.

@темы: Производная, Математический анализ

21:10 

Интегрирование функции КП. Вычеты

IWannaBeTheVeryBest
`int_{0}^{+\infty} x^(p - 1) cos(ax) dx` `0 < p < 1`
В задачнике сказано использовать этот контур:
читать дальше
и функцию `f(z) = z^(p - 1) * e^(-az)`
Не понимаю, с какой логикой выбирается контур. Их нужно запоминать отдельно для каждой задачи? Да и функция какая-то странная.
Ну для начала, по логике, надо разобраться с интегралом по всему контуру `\Gamma`. Он будет равен 0, так как в контуре особых точек нет.
Потом разбираемся с интегралом `int_{C_R} z^(p - 1) * e^(-az) dz`. Проведем оценку
`|int_{C_R} z^(p - 1) * e^(-az) dz| <= int_{C_R} |z^(p - 1)| * |e^(-az)| |dz| <= A*1/(R^(1 - p))*1/(e^(R)) * (piR)/2 -> 0 (R -> +\infty)`
Дальше разбираемся с суммой интегралов по отрезкам.
`int_{r}^{R} x^(p - 1) cos(ax) dx + int_{R}^{r} y^(p - 1) cos(ay) dy`
Тут пока точно не знаю, что делать. Верно ли записал эту сумму?
`int_{C_r} z^(p - 1) * e^(-az) dz = int_{C_r} (e^(-az) - 1)/(z^(1 - p))dz + int_{C_r} (dz)/(z^(1 - p))`
Первое слагаемое должно стремиться к 0. Но, если не ошибаюсь, то тут и второе слагаемое к 0 стремится. По аналогии если сделать оценку
`|int_{C_r} (dz)/(z^(1 - p))| <= int_{C_r} |dz|/|(z^(1 - p))| <= A * (pir)/2 * (1/r^\xi) -> 0 (r ->0; \xi < 1)`

@темы: ТФКП

14:55 

Интегрирование функции КП. Вычеты

IWannaBeTheVeryBest
`int_{0}^{+\infty} (cos(ax) - cos(bx))/(x^2)dx` `a>=0;` `b>=0`
Рассматривать нужно функцию `f(z) = (e^{iaz} - e^{ibz})/(z^2)`.
У меня тут только один вопрос. Как вот это проинтегрировать
`int_{C_r} (e^{iaz} - e^{ibz})/(z^2) dz`? r - радиус внутреннего полукруга, `r->0`
Не могу понять, каким образом выделить тут `1/z`?
Ну можно конечно как-то так пытаться `((z + 1)(e^(iaz) - e^(ibz)))/(z^2) - (e^(iaz) - e^(ibz))/z`, но мне кажется это ни к чему не ведет.

@темы: ТФКП

15:26 

Вычислить главное значение интеграла. ТФКП

IWannaBeTheVeryBest
`int_{-\infty}^{\infty} (sinxdx)/((x^2 + 4)(x - 1))`
Я знаю из мат.анализа, что главным значением тут должен быть предел
`lim_{R->\infty} int_{-R}^{R} (sinxdx)/((x^2 + 4)(x - 1))`
Еще я знаю, что точка `z = 1` будет лежать на контуре, если мы начнем продолжать нашу подынтегральную функцию в `C`. Поэтому эту точку нужно обходить при интегрировании. Но здесь подынтегральная функция общего вида. Я не знаю точно, как действовать в случае, когда точка сдвинута от нуля. Хотя мне кажется, что здесь надо как-то по-другому решать, ведь сказано, что нужно вычислить именно главное значение, а я с такой формулировкой первый раз сталкиваюсь... Не скажете, в каком направлении думать?

@темы: ТФКП

13:33 

Интегрирование функции КП. Вычеты

IWannaBeTheVeryBest
`I = 1/2 * int_{-\infty}^{+\infty} sinx/(x(x^2 + 9)) = int_{0}^{+\infty} sinx/(x(x^2 + 9))`
Вот я только не помню, под каким условием так можно делать. Это чисто формальность конечно, но из мат.анализа я помню, что просто так применить свойство интегралов для четной функции по симметричному промежутку, если этот промежуток бесконечен, нельзя. Если не ошибаюсь, то надо предполагать, что изначальный интеграл дан в смысле главного значения.
Ну ладно. Далее. Я не могу сразу написать, что
`I = Im(int_{-\infty}^{+\infty} (e^(iz)dz)/(z(z^2 + 9)))` и начать считать, так как одна из особых точек располагается на границе контура верхнего полукруга.
Решал я так. Эту точку я контуром как бы обхожу. У меня получается 2 полукруга. Один с радиусом `R (-> \infty)` другой с радиусом `r (-> 0)`. Ну довольно известный контур.
Дальше в примерах берется на рассмотрение регулярная функция в нашем новом контуре `\Gamma_{r, R}`, которая, по-сути, равна нулю, так как внутри этого контура у этой функции нет особых точек. Но если я буду рассматривать функцию `f(z) = e^(iz)/(z(z^2 + 9))`, то у нее будут внутри данного контура особые точки. Причем тут я не уверен, как мне действовать. Дело в том, что я сомневаюсь, входит ли внутрь контура точка `\infty`, ведь `R -> \infty`? Точка `3i` входит, вопросов нет. У меня была такая идея. Посчитать интеграл от `f(z)` по контуру `\Gamma_{r, R}`, получить какое-то значение `k`, а дальше уже расписывать, что `J = int_{C_r} + int_{C_R} + int_{-R}^{-r} + int_{r}^{R} = k` и уже спокойно решать. Я в общем-то дорешал, проверил в вольфраме, но у меня сошлось 50/50. Может просто очередная арифметическая ошибка.
Если нужно, могу сделать фотку контура и залить сюда для удобства))

@темы: ТФКП

19:36 

Интегрирование функции КП. Вычеты

IWannaBeTheVeryBest
`I = int_{0}^{2pi} (d\phi)/(1 - 2a*cos\phi + a^2)` `a \in C` `a \neq +-1`
Сначала преобразую знаменатель
`1 - 2a*cos\phi + a^2 = (a - cos\phi)^2 + 1 - cos^2\phi = (a - cos\phi)^2 + sin^2\phi`
Дальше замена
`e^{i\phi} = z`
`d\phi = -(idz)/z`
`L: |z| = 1`
`I = -i*int_{L} dz/((a - (z + 1/z)/2)^2 + ((z - 1/z)/(2i))^2)`
Разложим знаменатель на множители
`(a - (z + 1/z)/2)^2 + ((z - 1/z)/(2i))^2 = (a - (z + 1/z)/2 - (z - 1/z)/2)(a - (z + 1/z)/2 + (z - 1/z)/2)`
`(a - (z + 1/z)/2 - (z - 1/z)/2)(a - (z + 1/z)/2 + (z - 1/z)/2) = 0`
`a - (z + 1/z)/2 - (z - 1/z)/2 = 0 => z = a`
`a - (z + 1/z)/2 + (z - 1/z)/2 = 0 => z = 1/a`
Верно ли я понимаю, что дальше придется рассматривать 2 случая: `|a| < 1` и `|a| > 1`? В первом случае `I = 2pii*res_{z = a} f(z)`, а во втором `I = 2pii*res_{z = 1/a} f(z)`
И еще. Как тут определить, нулями какого порядка являются данные корни? Просто если все в знаменателе, в интеграле привести к общему знаменателю, то старшая степень должна быть 4.

@темы: ТФКП

00:12 

Интегрирование функции КП. Вычеты

IWannaBeTheVeryBest
`int_{0}^{2pi} (d\phi)/(a + cos\phi)` `a > 1`
Сделаем замену
`e^(i\phi) = z; d\phi = -idz/z`
`-i*int_{|z| = 1} dz/(a + (z + 1/z)/2) = -2i*int_{|z| = 1} (zdz)/(z^2 + az + 1)`
Дальше нужно определить особые точки
`z^2 + az + 1 = 0`
`z = (-a +- sqrt(a^2 - 4))/2`
Что дальше не совсем ясно. У нас окружность радиуса 1. И вот тут я даже не знаю, будут ли эти точки входить в эту окружность. Ясно только то, что обе эти точки имеют одинаковый модуль. А значит они либо одновременно входят в окружность, либо одновременно не входят.
Если `a < 2`, то мнимая часть будет не нулевая, а модуль числа, если не ошибаюсь, всегда будет =1.
Если `a > 2`, то мнимая часть будет нулевая и нам будет подходить только один корень `(-a + sqrt(a^2 - 4))/2`
Опять же это только мои предположения, и как их доказать я даже не знаю.
Я думал сначала вычислить еще через вычет бесконечности. Там вроде есть формула, если бесконечность - устранимая особая точка.
`res_{z = \infty} f(z) = lim_{z -> \infty} (f(\infty) - f(z)) * z = 2i`. Кстати эту формулу я тоже встретил в одном видео, хотя может она и в учебнике есть, или выводится как-то. Не задумывался.
Но у меня нет сведений по поводу вычетов других точек. Эти точки в разное время находятся в разных местах окружности. Сначала на границе, а потом только одна из точек находится внутри. Даже не знаю, что делать.
Раскладывать в ряд Лорана тут как-то совсем грустно.

@темы: ТФКП

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная