Записи пользователя: IWannaBeTheVeryBest (список заголовков)
18:23 

Теория вероятностей. Случайные процессы.

IWannaBeTheVeryBest
Есть ли какой-нибудь задачник по теории вероятностей, где разобраны задачи из данной темы? Ну к примеру
"Случайный процесс `x(t)` `t >= 0` определяется формулой `x(t) = a * sin(t + b) + \epsilon`, где `a,b,\epsilon` - независимые случайные величины, причем случайные величины распределены по законам...
Найти `P(X(t_1) <= X(t_2) | a <= 0)`, где `0 <= t_1 <= t_2 <= pi/2`"

@темы: Теория вероятностей

16:55 

Теория вероятностей. Функция от нескольких случайных величин.

IWannaBeTheVeryBest
"`X_1, X_2 ... X_n` - случайные независимые величины, каждая из которых имеет плотность распределения `f(x) = {(ax; x \in [0; 1]), (0; x \notin [0; 1]):}`. Найти плотность распределения случайной величины `X = min{X_1, X_2, ... , X_n}`"
Как я понял, найти сначала функцию распределения. Для каждой случайной величины она будет выглядеть так.
`F(x) = int_{-\infty}^{x} ax dx = {(0; x < 0), ((ax^2)/2; x >= 0):}`
Теперь можно найти функцию распределения случайной величины `X = min{X_1, X_2, ... , X_n}`. То есть
`F_X(x) = P{X < x} = P{min{X_1, X_2, ... , X_n} < x}`
А вот что дальше - не соображу. Вроде как если по определению, то
`F_X(x) = {(0; x < 0),(P{min{X_1; X_2; ... ; X_n} < x}; x \in [0;1]),(1; x > 1):}`
Если бы я ее нашел, то дальше оставалось бы просто найти производную и плотность найдена. Может я не в том направлении утопал? Ну я вроде как понимаю, что плотность должна быть равна нулю, если `x < 0`, так как вероятность того, что минимум из этих величин будет меньше икса, который итак меньше 0, равна 0 (ну как бы сами величины не могут принять значение < 0, исходя из функции распределения каждой из величин.). Тогда будем искать эту вероятность только для `x >= 0`. Мне пока кажется, что надо перемножить все вероятности `P{X_1 < x} * P{X_2 < x} * ... * P{X_n < x}`, хотя не могу этого логически объяснить. Может это и неверно вовсе)

@темы: Теория вероятностей

20:06 

Теория вероятностей. Функция от случайной величины.

IWannaBeTheVeryBest
"Случайная величина `X` имеет строго возрастающую функцию распределения `F(x)`. Найти распределение случайной величины `Y = F(X)`"
Вообще с первого взгляда просто очень мало данных. Ну то есть в задачнике разобран пример с похожим заданием, но там было дано $X \mathtt{\sim} Exp(\mu)$. Там еще была дана функция `Y = F(X)` в явном виде, но это не важно. Ощущение, что я чего-то не понимаю. Мне что-то должно дать то, что `F(x)` - строго возрастающая функция. А что именно? Я же не знаю ни плотности распределения, ни закона распределения. А ответ-таки очень однозначный
$Y \mathtt{\sim} R(0; 1)$

@темы: Теория вероятностей

22:40 

ТФКП. Рассуждения по поводу возведения в степень.

IWannaBeTheVeryBest
ТФКП у меня уже прошло, но вообще задумался по поводу возведения в комплексную степень (да, да, плохо что так поздно задумался, бла бла бла :D). Получается оно определено неоднозначно, ведь мы в ходе решения применяем комплексный логарифм. Возьмем общий пример
`a^b` и степень и основание - комплексные
`a^b = e^(b * Ln(a)) = e^(b * (ln|a| + i(arg(a) + 2pi*k))) = e^((Re(b) + i*Im(b)) * (ln|a| + i(arg(a) + 2pi*k))) = `
` = e^(Re(b) * ln|a| - Im(b) * (arg(a) + 2pi*k)) * e^(i*(Im(b) * ln|a| + Re(b) * (arg(a) + 2pi*k)))`
Верно ли будет написать, что
`a^b = e^(Re(b) * ln|a| - Im(b) * arg(a)) * (cos(Im(b) * ln|a| + Re(b) * arg(a)) + isin(Im(b) * ln|a| + Re(b) * arg(a)))`?
Ну или короче вопрос. Корректно ли опускать обороты `2pi*k` при записи конечного ответа? Или это будет неполный ответ? Или вообще некорректный? Просто например вольфрам спокойно пишет однозначный ответ и лишь снизу дописывает еще множество верных решений. В отличие от, скажем, того же тригонометрического уравнения в `R`, ну например `sin(x) = 0`, где он все-таки указывает обороты в ответе, а не просто пишет 0

@темы: ТФКП

11:54 

Задача по теории вероятностей. Показательное распределение.

IWannaBeTheVeryBest
"Обычно брокер получает от своего клиента приказы об операциях на фондовой бирже раз в неделю. Найти вероятность того, что сегодня поступит приказ, если последний раз поступил два дня назад. Поток приказов считать простейшим."
Функция распределения `F(x) = 1 - e^(-\mu * x)`, если `x >= 0`. В других случаях `F(x) = 0`.
Я тут точно не знаю как решать. Сказано про "раз в неделю", еще не встречал такого.
Можно ли считать, что `\mu = 1/7`? Ну как бы получается, что 1 раз в 7 дней поступает информация. Тогда `M[x] = 7`.
С другой стороны, меня смущает то, что дни - это же получается дискретные величины... И как-то надо интерпретировать вопрос о вероятности. То есть тут как бы вопрос не о промежутке, а о конкретном дне. То есть конкретно на второй день, после поступления приказа. Что-то вроде `P{2<= X < 3}`, хотя какой-то бред, как мне кажется.

@темы: Теория вероятностей

19:21 

Задача по теории вероятностей.

IWannaBeTheVeryBest
"Все значения равномерно распределенной величины расположены в промежутке `[2,8]`. Найти вероятность того, что случайная величина попадет в промежуток `[6,9]` и в интервал `(3,5)`."
Функция равномерно распределенной величины принимает значение `(x - a)/(b - a)` на заданном промежутке. Левее его она равна нулю, правее - единице.
`P(6 <= X <= 9) = P(9) - P(6) = 1 - 2/3 = 1/3`
`P(3 < X < 5) = P(5) - P(3) = 1/3`
По ответам там и там `2/3`. Я что-то не так понимаю? И еще. Есть какая-то разница интервал это или промежуток (отрезок)?

@темы: Теория вероятностей

15:26 

Задача по теории вероятностей.

IWannaBeTheVeryBest
"Производится 10 независимых выстрелов по цели, вероятность попадания в которую при одном выстреле равна 0.2. Найти а) наиболее вероятное число попаданий; б) вероятность того, что число попаданий будет не меньше 2 и не больше 4."
Ну под буквой a) даже без всяких неравенств понятно, что ответ 2.
Вот под буквой б), насколько я понимаю, надо применить интегральную теорему Муавра-Лапласа.
`P_n(k_1, k_2) = \phi(x_2) - \phi(x_1)`
`x_2 = (k_2 - np)/(sqrt(npq))`; `x_1 = (k_1 - np)/(sqrt(npq))`
Значения `\phi(x)` можно смотреть по
таблице
У нас в задаче
`k_1 = 2`, `k_2 = 4`; `p = 1/5`, `q = 4/5`; `n = 10`
В таком случае
`x_1 = 0`, `x_2 = sqrt(5/2) = 1.5811...`
Ищу в таблице `x = 1.58`. Это значение `0.4429`
`P_10(2,4) = 0.4429`
Но ответ `0.591`. Я где-то ошибся?

@темы: Теория вероятностей

19:14 

Задача по теории вероятностей.

IWannaBeTheVeryBest
"Из колоды карт (52 карты) наугад берутся 6 карт. Найти вероятность того, среди этих карт будут представители всех 4 мастей."
Почему-то моя логика решения неверная. Объясните почему?
По сути, чтобы найти вероятность данного события `P(A)`, нам надо убрать из всех возможных выборок 6 карт те, в которых отсутствует какой-то представитель из 4 мастей. Всего количество способов выбрать 6 карт из 52 = `C_{52}^{6}`. Теперь разберемся с тем, сколько же существует всего комбинаций без какой-либо масти. Их всего `4 * C_{39}^{6}`. Ну объяснить просто. Мы поочередно убираем 13 карт с одинаковой мастью из колоды и составляем колоду из остальных карт. К примеру, если мы убрали пики, то в получающейся выборке также может присутствовать ситуация, когда все 6 карт состоят из, скажем, червей. Ну или еще какие-то любые комбинации из оставшихся карт.
По итогу `P(A) = (C_{52}^6 - 4 * C_{39}^{6})/C_{52}^{6}`. Можно выделить единицу. Однако с ответом не сходится. Могу предоставить ответ.

@темы: Теория вероятностей

20:43 

Найти матричную экспоненту.

IWannaBeTheVeryBest
`A=((4, -2, 2), (-5, 7, -5), (-6, 6, -4))`
Найти `f(A) = 2^A`
Вот в данном случае неприятно то, что 2 стоит в основании. Хотя при разложении в ряд Тейлора там будут лишь добавляться множители `ln2` от дифференцирования.
Вообще, я знаю, как получать матричную экспоненту для Жордановой клетки. Но в данном случае у нас матрица приводится к диагональной. То есть
`2^J = ((2^3, 0, 0), (0, 2^2, 0), (0, 0, 2^2))`
Потом, если применять логику алгоритма с экспонентой, а не с двойкой, должно быть так
`2^A = S * 2^J * S^(-1)`
где S - матрица, составленная из собственных и присоединенных векторов матрицы А
Хотел бы вообще узнать, как действовать в общем случае. Скажем если Жорданова форма матрицы
`J = ((a_1, 1, 0, 0),(0, a_1, 0, 0),(0, 0, a_2, 0), (0, 0, 0, a_3))`
Для каждой из этих клеток я знаю как построить экспоненту. Но тут 3 клетки. Как их объединить? Так?
`e^(Jt) = ((e^(a_1), te^(a_1), 0, 0),(0, e^(a_1), 0, 0),(0, 0, e^(a_2), 0), (0, 0, 0, e^(a_3)))`
Ну t можно принять за 1 и будет то что надо.

@темы: Линейная алгебра

10:31 

Жорданов базис и минимальный полином

IWannaBeTheVeryBest
`A = ((4, -2, 2),(-5, 7, -5),(-6,6,-4))`
`B(a) = A - a*E`
`det B = (3 - a)(2 - a)^2`
Определим минимальный полином. Он будет в виде
`\mu = (3 - a)(2 - a)^l`
`1<= l <= 2` (ну короче или 1 или 2 :))
`rang B(2)^i = r_i`
`r_0 = 3; r_1 = 1 = r_2`
Определим порядки Жордановых клеток для этого собственного числа по формуле
`m_i = r_{i-1} - 2r_{i} + r_{i + 1}`, где `i` - порядок Жордановой клетки, `m_i` - число таких клеток
`m_1 = 3 - 2 + 1 = 2`
`m_2 = 1 - 2 + 1 = 0`
Так как `l` совпадает с максимальным порядком Жордановой клетки, то `l = 1`.
Жорданов базис.
1) Находим степень `q`, начиная с которой ранг матрицы перестает падать. `q = 1`
2) Рассмотрим базис ядра `N_1`, решая `B*X = 0`
`B = ((2, -2, 2), (-5, 5, -5), (-6, 6, -6))`
Размерность `N_1 = 2`. Базис `(1, 0, -1)^T`; `(0, 1, 1)^T`
А дальше предполагаю, что надо просто найти присоединенный вектор. Он и будет третьим в Жордановом базисе. Верно?

@темы: Линейная алгебра

10:05 

Задачи по теории вероятностей.

IWannaBeTheVeryBest
"Вероятность сдачи экзамена студентом на пятерку равна 0,3, четверку - 0,45, двойку - 0,1; вероятность того, что он не явиться на экзамен - 0,05. Какова вероятность того, что студент получит положительную оценку?"
Можно ли применять теорему сложения вероятностей? Нас интересуют события с пятеркой и четверкой. "Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий." Ну как бы `0.3 + 0.45 = 0.75`?

"Десять студентов решают задачу . Из них 2 студента учатся на «отлично» (первая группа ), пять на «хорошо» (вторая группа) и три на «удовлетворительно» (третья группа). Вероятность того, что задача будет решена студентом из первой группы, равна 0,9; второй - 0,8; третьей группы - 0,5. Какова вероятность решения задачи одним из студентов?"
Верно ли тут применять формулу о наступлении хотя бы одного события? То есть
`P = 1 - q1q2q3 = 1 - 0.1*0.2*0.5 = 0.99`?
Тут просто не сказано, что ТОЛЬКО одним. Значит как только один решит, остальные нас уже не интересуют.

@темы: Теория вероятностей

17:48 

Матрица проектирования

IWannaBeTheVeryBest
Задача как бы обобщает предыдущую. Ну например такая.
Определить матрицу проектирования пространства `E_3` на подпространство `L: -20x=15y=12z` параллельно пространству `M:2x+3y-z=0`
Верно ли будет выбрать базис на плоскости `f_1, f_2` плюс выбрать вектор на прямой `f_3`. Таким образом получить другой базис.
Дальше смотрим, куда переходят наши базисные вектора, составляя линейные комбинации из векторов `f` (короче говоря выражаем вектора `e` через базис `f`). Получаем коэффициенты и пишем в матрицу.
Правда не уверен что матрица получится квадратной, ведь у нас вектора базиса `f` линейно зависимы. Или это нормально, что матрица прямоугольной получится?

@темы: Линейная алгебра

19:50 

Вычислить матрицу ортогонального проектирования

IWannaBeTheVeryBest
Вычислить матрицу ортогонального проектирования пространства `E_3` на подпространство `L`, если `L` - плоскость, натянутая на вектора
`x = (-1,1,-1)`
`y = (1,-3,2)`
Верно ли я понимаю, что задачу можно переформулировать как поиск матрицы оператора проектирования `P:E_3 -> L`?
Ну вот по сути, когда я находил раньше находил матрицы операторов, я смотрел на действие оператора на базисных векторах, смотрел какими они становятся в `L`, и записывал их в матрицу. Ну в общем просто записывал образы базисных векторов в матрицу и все.
Только тут плоскость какая-то неудобная. В ней лежат все вектора вида `ax + by`. То есть каждый из базисных векторов должен стать представимым в виде данной линейной комбинации. Но я не могу понять, куда конкретно они будут переходить? Вот если бы это была просто какая-то плоскость типа `z = 0`, то я бы взял трехмерную единичную матрицу и занулил соответствующую единицу.
Может надо как-то развернуть сначала систему координат как-то, чтобы получилась данная плоскость, потом подействовать на нее обычной матрицей проектирования и повернуть обратно? Могу найти ортогональный вектор двум данным `z`, затем перевести `x, y, z` в `e_1, e_2, e_3` соответственно, получить матрицу этого преобразования, воспользоваться стандартной матрицей проектора и воспользоваться обратным преобразованием. Правда заморочек много. Может проще можно?

@темы: Линейная алгебра

23:07 

Внешнее произведение q-форм

IWannaBeTheVeryBest
Вообще это произведение определяется как тензорное произведение этих форм, альтернированных по всем индексам и домноженное на `(p + q)!/(p!*q!)`
Задание такое. Найти внешнее произведение форм, заданных строками
`C_1 = (1,1,2,2)`
`C_2 = (1,1,1,3)`
`C_3 = (1,1,1,2)`
Ну, насколько я понял, каждая из этих строк является тензором типа `(0,1)`. Если я найду тензорное произведение двух из них, то я автоматом получу тензор типа `(0,2)`
Альтернирование и домножение на константу не меняет типа тензора. Соответственно, когда я домножу полученный тензор на третью внешнюю форму тензорно, то это будет уже тензор типа `(0,3)`. Однако результатом перемножения этих форм является тоже строчка `1xx4`. Это как?

@темы: Линейная алгебра

16:39 

Альтернирование тензора

IWannaBeTheVeryBest
Как производится альтернирование `a_{[k l]}^{[ij]}` тензора `a_{k l}^{ij}`? Я правильно понимаю, что сначала нужно получить тензор `a_{k l}^{[ij]}`, а потом уже его альтернировать по нижним индексам и получить `a_{[k l]}^{[ij]}`? Просто я решил таким образом поступить, а ответ не сошелся.
Тензор `a_{kl}^{ij} = `

Извините, что картинкой. Просто такую "байду" формулой изобразить будет сложно, я думаю.
Решаю так. Сначала альтернирую по верхним индексам. Там где совпадают `ij`, будет 0. Не 0 будут во всех слоях на побочных диагоналях.
Ну логика простая
1) `i = k = l = 1; j = 2`
`a_{11}^{[12]} = 1/2*(a_{11}^{12} - a_{11}^{21}) = 3`
По логике
`a_{11}^{[21]} = -3`
Дальше просто повторяю эти действия для каждого слоя. То есть просто вычитаю элементы на побочной диагонали, ставлю это число на место `12` и то же число с обратным знаком на место `21`.
2) `a_{22}^{[12]} = -a_{22}^{[21]} = 1/2*(a_{22}^{12} - a_{22}^{21}) = -4`
Таким образом я определил значения слоев `a_{11}^{ij}` и `a_{22}^{ij}`
В итоге у меня получился тензор, где
`a_{12}^{ij} = a_{11}^{ij}`
`a_{21}^{ij} = a_{22}^{ij}`
Назовем его тензором `b_{kl}^{ij}`
Вот у меня скорее всего где-то здесь уже ошибка. Дело в том, что
`b_{[12]}^{12} = -b_{[21]}^{12} = 1/2*(b_{12}^{12} - b_{21}^{12}) = 1/2*(3 - (-4)) = 7/2`
Получилось у меня `+-7/2` на побочной диагонали двух слоев. А в ответах там `+-1/2` на тех же местах, и немного с другим расположением знаков.

@темы: Линейная алгебра

23:49 

Конформные отображения. ТФКП

IWannaBeTheVeryBest
Область
`|z - 1| > 1`
`|z| < 2`
Надо отобразить с помощью функции `w = e^{2pi*i*(z/(z - 2))}`
Вообще, образы кривых и областей я обычно находил, решая в лоб. Просто записывал уравнения кривых в комплексной форме, потом выражал `z` через `w` и подставлял в уравнения кривых. Получал новые кривые. Если надо было отобразить область, ограниченную этими кривыми, то я еще брал точку из этой области и также смотрел, в какую точку она переходит, тем самым определяя куда перешла область.
Тут как-то решать в лоб не очень. Логарифмы будут вылезать и я не уверен, что в конце смогу сделать картинку области по полученным уравнениям кривых.
Почитал в учебниках, там показано, куда отображаются отрезки, полосы... А вот про окружности ничего не нашел. Как отображать окружности экспонентой?

@темы: ТФКП

20:41 

Построить резольвенту Фредгольма

IWannaBeTheVeryBest
Для заданного ядра `K(s,t)` интегрального оператора, заданного на отрезке `[a, b]` построить резольвенту Фредгольма как для вырожденного ядра.
В примере дано
`K(s,t) = s - t;` `a = 0;` `b = 1;`
Рассматривается интегральное уравнение
`f - Mf = h`, где
`(Mf)(s) = \lambda * int_{a}^{b}K(s,t)*f(t)dt`
Уравнение переписывается в виде
`f(s) = h(s) + \lambda*int_{0}^{1}(s-t)f(t)dt = h(s) + \lambda*s * int_{0}^{1} f(t) dt - \lambda * int_{0}^{1} t*f(t)dt`
Вводится обозначение
`c_{1} = int_{0}^{1} f(t) dt;` `c_{2} = int_{0}^{1}t*f(t) dt` (1)
Отсюда
`f(s) = h(s) + \lambda*sc_1 - \lambdac_2` (2)
Вот дальше написана фраза и выполнены действия, которых я вообще не понял.
Подставим ВЫРАЖЕНИЕ (2) в равенства (1). Получим систему уравнений для `c_1` и `c_2`
`(1 - 1/2\lambda)c_1 + \lambda*c_2 = int_{0}^{1} h(t) dt`
`-1/3\lambda*c_1 + (1 + 1/2\lambda)*c_2 = int_{0}^{1} t * h(t) dt`
Каким образом? Что это за "ловкость рук"? Вообще не понял, что произошло. Куда s делось? Почему (2) - это выражение? Где `f(s)`?

@темы: Функциональный анализ

13:08 

Интегрирование функции КП. Вычеты

IWannaBeTheVeryBest
`int_{|z - 1| = 1} sin(pi*z)/((z^2 - 1)^2)dz`
В данном случае, у меня две существенно особые точки. И только одна из них входит в контур. Понимаю, что надо выудить из ряда Лорана `c_{-1}` член, но не очень понимаю. Надо в любом случае раскладывать полностью всю функцию в ряд Лорана? Не зависимо от того, сколько существенно особых точек и сколько из них входят в контур? Если так, то надо разбить дробь на простые
`1/((z^2 - 1)^2) = 1/((z - 1)^2(z + 1)^2) = 1/4(1/(z + 1) + 1/((z + 1)^2) - 1/(z - 1) + 1/((z - 1)^2))`
И дальше, насколько я понимаю, нам надо раскладывать функцию по степеням `z - 1`.
Поэтому, перед разложением, мне надо преобразовать две первые дроби
`1/(1 + z) = 1/(1 - (z - 1)/(-1) + 1) = 1/2(1/(1 - (z - 1)/(-2)))`
`1/(1 + z)^2 = 1/4(1/(1 - (z - 1)/(-2)))^2`
Для второго случая у меня вроде как есть разложение.
Дальше синус... Ну наверное можно воспользоваться формулой приведения
`-sin(pi(z - 1)) = -sin(pi*z - pi) = sin(pi*z)`
Ну а для
`-sin(pi(z - 1))` разложение есть.
В верном направлении иду? Пока не буду раскладывать. Вдруг ошибаюсь))

@темы: ТФКП

13:26 

Привести матрицу к диагональному виду

IWannaBeTheVeryBest
Я тут решил вспомнить немного материал из прошлого. Как привести матрицу к диагональному виду? Ну скажем такую
`A = ` $\left(\begin{array}{c c}1 & 2 \\ 3 & 4 \end{array}\right)$
Пусть передо мной задача найти n-тую степень матрицы. Очевидно, ее надо привести к диагональному виду и возвести каждый элемент на диагонали в n-тую степень. Можно использовать алгоритм приведения ее к Жордановой форме. Но почему ее нельзя свести к диагональному виду путем элементарных преобразований строк? Скажем, если `L_n` - это n - тая строка, то `L_2 - 3*L_1` и затем `L_1 + L_2`? И будет матрица
`A' = ` $\left(\begin{array}{c c}1 & 0 \\ 0 & -2 \end{array}\right)$
В чем подвох? Я похоже не понимаю, что такое диагональный вид матрицы :D

@темы: Линейная алгебра

22:56 

Решение волнового уравнения

IWannaBeTheVeryBest
Не могу найти, как решить уравнение с условиями
`9u_{t t} = u_{x x}`
`u_x(0, t) = u_x(2, t) = 0`
`u(x, 0) = x, 0<=x<=1; u(x, 0) = 1, 1<=x<=2`
`u_t(x, 0) = 0`
Везде, что я только не смотрел, везде рассматриваются примеры, где во втором условии данной системы фигурируют сами функции `u`, а не их производные. Вообще не знаю, что с ними делать.

@темы: Дифференциальные уравнения, Уравнения мат. физики

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная