Записи пользователя: cube in cube (список заголовков)
21:59 

Наименьшее расстояние между двумя точками по данной поверхности

Интересует как найти это расстояние? Интересует случай когда прямая, на которой лежат точки, не принадлежит поверхности. Есть ли алгоритм решения данной проблемы?

20:42 

Ищу задачник

Ищу задачник по рядам, где были бы сложные и интересные задачки по рядам. Прочитал у Фихтенгольца про ряды, а закрепить материал нечем:depress2:

@темы: Ряды

20:26 

Неравенство

Доказать, что для `x, y, a in (0,1)` при `x != y` выполнено неравенство:
`1/(| x^a - y^a |) < 1/(a * | x - y |)`
Доказательство:
перепишем неравенство в виде: `| x^a - y^a | > a*| x - y |`
так как `x^a = int_0^x a*t^(a-1) dt` и `y^a = int_0^y a*t^(a-1) dt`, то `| x^a - y^a | = a*| int_0^y t^(a-1) dt - int_0^y t^(a-1) dt | = a*| int_x^y t^(a-1) dt | = a*| (x-y)*t_0^(a-1) |` - в силу теоремы о среднем значении интеграла. Но `t_0^(a-1) > 1 => | x^a - y^a | = a*| (x-y)*t_0^(a-1) | > a*| x - y |` ч.т.д
Всё ли верно?

@темы: Доказательство неравенств

19:07 

Правильно ли?

При каких ограничениях на `p` и `q` уравнение `x^(2 * n + 1) + p * x + q` имеет ровно три различных вещественных корня
В силу теоремы Ролля производная функции `P(x) = x^(2 * n + 1) + p * x + q` должна иметь два различных вещественных корня, т.е. ` (2* n + 1) * x^(2*n) + p = 0` откуда `p < 0` и корни производной `x_1 = -(-p/(2*n+1))^(1/(2*n))` , `x_2 = +(-p/(2*n+1))^(1/(2*n))`.
т.к `lim_(x->infty) P(x) = -infty` , то `P(x_1) > 0` , а `P(x_2) < 0` откуда получаем `q > p * (-p/(2*n+1))^(1/(2*n)) * (2*n)/(2*n+1) ` , `q < -p * (-p/(2*n+1))^(1/(2*n)) * (2*n)/(2*n+1)`
Окончательно `p < 0 ` и `q in (p * (-p/(2*n+1))^(1/(2*n)) * (2*n)/(2*n+1) , -p * (-p/(2*n+1))^(1/(2*n)) * (2*n)/(2*n+1))`

@темы: Математический анализ

20:29 

Можно ли так доказать?

1) Пусть `a_n` - ограниченная последовательность натуральных чисел ,`lim_(n -> infty) (a_1 * ... * a_n)^(1/n) = 1` . Найти `lim_(n -> infty) (a_1+...+a_n)/n`
Для начала докажем, что `lim_(n -> infty) (a_1 * ... * a_n)^(1/n) = lim_(n -> infty) a_n`. Для этого рассмотрим предел `lim_(n -> infty) ln(a_1 * ... * a_n)^(1/n) = lim_(n -> infty) (ln(a_1)+...+ln(a_n))/n`, по теореме Штольца он равен `lim_(n -> infty) ln(a_n)`. Применив теорему Штольца к пределу `lim_(n -> infty) (a_1+...+a_n)/n` получим, что он равен `lim_(n -> infty) a_n`, следовательно искомый предел равен 1.

2) Если `lim_(x -> infty) f(x) + f'(x) = a` , то `lim_(x -> infty) f(x) = a`, а `lim_(x -> infty) f'(x) = 0`. Доказать
Применив правило Лопиталя к пределу `lim_(x -> infty) (e^x * f(x)) / e^x` получим : `lim_(x -> infty) (e^x * f(x)) / e^x = lim_(x -> infty) (e^x * (f(x)+ f'(x))) / e^x = a`
Следовательно `lim_(x -> infty) f'(x) = 0` и `lim_(x -> infty) f(x) = a`

@темы: Пределы

18:04 

Двойной предел

Есть ли какие - то другие способы нахождения двойных пределов, кроме тех, которые описаны в Фихтенгольце. (имеются ввиду пределы с неопределённостью)
Я так понял, что для доказательства не существования предела, достаточно показать, что при приближении к точке по двум различным кривым значения, получающиеся в пределе различны. Тут вроде всё достаточно просто...
А для доказательства существования предела можно "зажать" функцию, стоящую в пределе и по теореме о сжатой функции определить предел ( если такое возможно), собственно вопрос: если теорема о сжатой функции не работает, то что делать?

@темы: Пределы

21:54 

Ищу задания

Никак не могу найти задания студенческой математической олимпиады МФТИ за последние три года, их и ищу.

@темы: Литература

21:24 

Ищу книгу по теории матриц

Ищу книгу по теории матриц. Что-то наподобие Фихтенгольца, по объёму, глубине и понятности изложения.

@темы: Поиск книг

21:04 

Доказать неравенство

Пусть `f` определена на интервале `[0;2]` так что : `f(x) > 0 , f''(x) >= 0`
следует ли отсюда, что `int_0^2 f(x) dx <= 2*f(2)`
Если бы в условии было бы сказано, что функция непрерывна на заданном отрезке, то тогда это утверждение очевидно. Будет ли оно верным если функция не непрерывна на заданном промежутке?

@темы: Интегралы

22:52 

Задача с Санкт-Петербургской региональной студенческой математической олимпиады 2009г

Пусть `f(x) = sum_(k=1)^(oo) cos(4^k*x)/2^k`. Доказать существование такой константы `C > 0` , что для всех `x_1, x_2 in RR => |f(x_1) - f(x_2)| <= C*(|x_1 - x_2|)^(1/2)`.

Исходный функциональный ряд сходится равномерно (его можно сравнить с рядом `sum_(k=1)^(oo) 1/2^k`). Можно ли сделать вывод о существовании `C` из равномерной сходимости функционального ряда?

@темы: Олимпиадные задачи, Ряды

19:25 

Задача с II тура открытой студенческой интернет-олимпиады по математике

`{(x_1 + x_2 + cdots + x_n = -1), (2*x_1 + 2^2 * x_2 +cdots + 2^n * x_n = -1) , (3*x_1 + 3^2 * x_2 +cdots+ 3^n * x_n = -1), (ldots), (n*x_1 + n^2 * x_2 + cdots+ n^n * x_n = -1):}`
Найти `(2015)! * (x_((n-1)o) + 1008* x_((n)o))` при `n = 2016`

Попытки решения:
`x_((n)o)` можно найти используя формулу Крамера. Получается `x_((n)o) = (-1)^n/((n)!)`.
А вот что делать дальше? Получить `x_((n-1)o)` по Крамеру не получилось.
Рассматривая данную систему для малых `n` можно прийти к предположению о том, что `x_((n-1)o) = ((-1)^n*sum_(k=1)^(n) k)/((n)!)` (маткад тоже выдал такой ответ). Но подтвердить это предположение не получается ( по индукции всё плохо выходит).

@темы: Олимпиадные задачи, Системы линейных уравнений

14:52 

Ищу литературу, интернет ресурсы

Ищу литературу и интернет ресурсы с заданиями различных вузовских студенческих олимпиад по математике.
P.S. С заданиями олимпиады МФТИ знаком.

@темы: Поиск

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная