Записи пользователя: MestnyBomzh (список заголовков)
23:08 

Задача про оператор

Линейный оператор `A`: `RR^n to RR^n` таков, что `A^3` - проектор.
1) Какие собственные значения может иметь `A`?
2) Верно ли, что `A` будет иметь диагнональную матрицу в каком-либо базисе `RR^n`

Моя попытка решения п.1
По определению, проектора: `A^6 = A^3`. В то же время по определению союственного числа: `A x = lambda x` => `A^6 x = lambda^6 x` и `A^3 x= lambda^3 x => lambda^6-lambda^3 = 0 Leftrightarrow lambda = 0, lambda = 1`, кратность корней 3
Моя попытка решения п.2
Здесь, к сожалению, не все лямбды различны, значит возможна ситуация, когда собсвтенных векторов может быть недостаточно и собственный базис не будет существовать. Тут как-то надо найти собсветнные вектора?

@темы: Линейная алгебра

15:30 

Линейная зависимость/независимость определителей и СЧ

Добрый день. Могли бы проверить задачу (пункты 2, 3), а также сказать, верно ли моё утверждение в п. 1 ?
1) Верно ли, что если у нас есть матрица `X` и известны её СЧ `lambda_1..lambda_n`, то для матрицы `X-m*E` собственные числа `lambda_1-m, ..., lambda_n-m`?
И следует это из представления матрицы в собственном базисе?
Дальше сама задача:
2) Задача: доказать, что функции `det(X), det(X-E), det(X+E)` на пространстве комплексных матриц 3x3 линейно независимы.
Я сначала говорю, что если мы представим матрицу `X` в собственном базисе, то её определитель не поменяется, поэтому `det(X) = lambda_1 * lambda_2 * lambda_3`
Значит `det(X-E) = (lambda_1-1) * (lambda_2-1) * (lambda_3-1)` Аналогично `det(X+E)= (lambda_1+1) * (lambda_2+1) * (lambda_3+1)`
Дальше я просто составляю систему: `c_1 * det(X) + c_2 * det(X+E) + c_3 * det(X-E)=0`, решаю систему, получаю нетривиальное решение => доказано
3) Докажите, что найдется такое натруальное `m`, что `det(X-mE), det(X-(m-1)E)...det(X+mE)` линейно зависимы (матрица X - по-прежнему 3x3). Тут я просто взял m=4, выписал как и в пункте a) и получил, что система имеет только решение `c_i=0`

@темы: Линейная алгебра

19:58 

Задача про функцию

Пусть `f` - гладкая, вещественная функция, причем `f(0)=0, f(1)=1`. Докажите, что найдутся различные `x_1, x_2 in [0;1]`, для которых : `1/{f'(x_1)} + 1/{f'(x_2)} = 2`

По опыту решения таких задач много раз видел, как начинают рассматривать некоторую функцию. Здесь первое, что пришло в голову, рассмотреть функцию `F = x * (f(x)-1)`
Тогда получается, что `F(0)=0, F(1)=0`. Значит на промежутке `[0;1]` есть точка, в которой производная равна нулю + на этом промежутке функция достигает своего максимального и минимального значения. Пока что дальше я не продвинулся с этим.
Ещё была идея как-то с выпуклостью/вогнутостью посмотреть...

@темы: Математический анализ

00:44 

Собственные числа

Могли бы подтвердить/опровергнуть. Если надо найти собственные числа и собственные вектора для матрицы `A^(-2)`, то верно же я понимаю, что это будут `lambda^(-2)`? а собственные вектора останутся теми же? Это следует из разложения матрицы A в собственном базисе?

@темы: Линейная алгебра

01:03 

Сходимость последовательности

Могли бы проверить моё решение. Решение пункта 1 мне кажется довольно громоздким

Последовательность `a_n` такова: что
1) все `a_n in (0;1)`
2) `a_{n+1} < (a_n+a_{n-1})/2`

Вопрос:
1) Сходится ли `a_n`?
2) Найти множество возможных пределов `a_n`

Моё решение:
1) От противного. Во-первых сразу отметим, что `a_n` не может расходиться к бесконечности, так как она ограничена. Тогда нам нужно только доказать то, что последовательность имеет один предел (то есть нельзя выделить подпоследовательность, которая бы сходилась к другому пределу). Предположим, можно выделить две подпоследовательности, сходящиеся к `a` и `b`. Не теряя общности `a<b`.
Тогда рассмотрим такие соседние члены `a_k` и `a_{k+1}`, что `a_k` лежит в бесконечно малой окрестности `b`, а `a_{k+1}` в бесконечно малой окрестности `a`. Тогда `a_{k+2} < (a+b+2 epsilon) / 2 = (a+b)/2 + epsilon`. Поскольку мы можем устремить `epsilon to 0`, то можно сделать вывод, что `a_{k+2}` лежит вне окрестности точки `b`. Тогда получили, что одновременно `a_{k+1}` и `a_{k+2}` лежат вне окрестности точки `b`. Последующие члены последовательности будут обязательно меньше, чем `max(a_{k+2}, a_{k+1})`, а значит никак не смогу попасть в окрестность `b`, значит в её окретсности не может лежать бесконечно много точек, а значит `a_n` не может иметь двух пределов.
2) Множество `(0;1)`. Построим последователньность, которая сходится к фиксированному числу `a`: `a_0 = a, a_1 = a+epsilon_1, a_2 = (a_0 + a_1)/2-epsilon_2 , a_3 = a, a_4 = (a_2 + a_3)/2-epsilon_3, a_5 = a,.`
Здесь все эпсилоны символизируют бесконечно малые величины

@темы: Математический анализ

11:18 

Две случайных величины на отрезке

Добрый день! У меня есть задача, могли бы проверить моё решение.
Задача:
На отрезке `[0;1]` в точках `x,y` независимо выбранных из равномерного распределения, находятся два детектора элементарных частиц. Детектор засекает частицу, если она пролетает на расстоянии не более `1/3` от него. Известно, что поля восприятия покрывают весь отрезок. С какой вероятностью `y >= 5/6` ?
Моё решение:
1) Я нарисовал в квадрате 1х1 множество точек, которые удовлетворяют условию "детекторы покрывают весь отрезок"

2) Далее надо найти условную вероятность: Р(y > 5/6 | покрыт весь отрезок). Я буду искать эту вероятность как отношение благоприятных исходов ко всевозможным. Я полагаю, что априори мы попали в закрашенную область, значит в знаменателе стоит площадь двух закрашенных треугольников: `S = 2 * 1/3 * 1/3 * 1/2`. Теперь числитель. Я взял пересечение y >= 5/6 и двух закрашенных треугольников, получается один треугольник, площадь которого равна `1/6*1/6*1/2`
3) Нахожу их отношение, получаю `0.125`

@темы: Теория вероятностей

22:59 

Комбинация нормальных CВ

В ходе решения задачи столкнулся с некоторым недопониманием в случае сложения двух нормальных СВ. А именно следующее: Есть две СВ `X` и `Y`, обе распределены нормально. Дальше объявляется новая CВ `Z = 0.5X+0.5Y`. И теперь возникает вопрос: а верно ли, что `0.5*f_X(10)+0.5*f_Y(10) = f_Z(10)`? У меня почему-то получается, что это неверно

@темы: Теория вероятностей

01:25 

Сходимость ряда

Добрый день! Могли бы проверить мое решение для следующей задачи:
`a_1 = 1, a_(n+1) = sin(a_n)`. Сходится ли ряд `a_n`?
Док-во:
1) При `n >= 1` выполнено: `sin(1/n) > 1/(n+1)`, в силу эквивалнтости `sin(1/n) `
2) Теперь докажем по индукции, что `sin(sin(..(sin(1)))` (так n раз) `> 1/n` - для всех `n>1`. а) База верна б) Пусть верно `sin(sin(....(sin(1))) > 1/n`. Тогда возьмем синус от обеих частей. Так как это монотонное преобразование для величин, лежащих в отрезке `[0;1]`, то неравенство останется верным. Тогда Получаем `sin(sin(sin(...(sin(1)))) > sin(1/n)`. Исходя из пункта 1) `sin(1/n) > 1/(n+1)`, шаг индукции доказан.
3) Ограничили снизу гармоническим рядом, значит и исходный расходится

Мне моё решение не нравится. Оно выглядит довольно громоздким. Я понимаю логически что будет происходить: когда мы будем больше и больше раз применять синус, то он будет идти к нулю. Но в с каждым разом это стремление будет всё медленнее и медленнее. Например, `sin(0.1) = 0.099`. И получаем очень сильную расходимость, сумма будет очень быстро расти. Я не могу перевести в данном случае "очень медленно стремится к нулю".

@темы: Ряды

20:03 

Сравнить два числа

Задача такая: надо сравнить два числа: `S_1 = 1+1/sqrt(2) + 1/sqrt(3)+...+1/sqrt(36)` и `S_2 = 1+1/(2)^(1/3)+1/(3)^(1/3)+...+1/(27)^(1/3)`.
Я решил воспользоваться аналогичной идеей той, что когда-то воспользовался Орем для доказательства расходимости гармонического ряда. То есть, для примера, `1/sqrt(4)+1/sqrt(5)+1/sqrt(6) + 1/sqrt(7) + 1/sqrt(8) < 5*1/sqrt(4) = 5/2`. Для второй суммы я делал аналогичную оценку, только снизу. Получилось что-то примерно `S_1 < 12`, `S_2 > 11`. Не хватает буквально единички, может быть есть идеи?

@темы: Математический анализ

00:04 

Интеграл (баг или нет в вольфраме)

Брал интеграл `int 1/(sin(x)+2cos(x)+3) dx`. Сверялся с вольфрамом, неожиданно получил это:

Я построил графики, это точно разные функции

Где я ошибаюсь?

@темы: Интегралы

13:37 

Нахождение стационарных точек в рекуррентных уравнениях

Наткнулся на рекуррентное уравнение: `a_(n+1) = (n+1)(a_n - 1), a(1) > 0` В нем надо найти стационарные точки. То есть надо найти такое `a(1)`, что решение не уходит на бесконечность. Путем подбора чисел я выяснил, что устойчивое решение находится где-то в промежутке `1.7`, `1.8`. У меня вопрос: как можно аналитически найти число? Я помню из курса диффуров, что в линейных случаях всё просто - характеристическое уравнение и вперед, а в нелинейных мы обычно линеаризовали ( то есть находили производную `{d a_(n+1)}/{d a_n}`), а потом уже искали собственные значения. Здесь же производная зависит от `n` и я попал в тупик

@темы: Дифференциальные уравнения

10:21 

Остаток от деления

Там же была задача одна, я свёл её к такой задаче: "Пусть надо найти остаток от деления `R(n/{k*m})`. Мы умеем находить `R(n/k)` и `R(n/m)`. Исходя из этих знаний можно ли найти `R(n/{k*m}) ? `". Я пробовал по-разному, но складывается ощущение, что никакой зависимости нет
А исходная задача - был многочлен некоторый степени 2018, его надо разделить на многочлен второй стечени. Я вспомнил теорему Безу, которая позволяет находить остаток от деления многочлена на один двучлен, а как поделить на два двучлена и найти остаток я не догадался

15:04 

Математическое ожидание

Добрый день! Вчера прошел очный тур "Я-профессионал". У меня не получилось решить одну задачу, но интересно знать как её решать.
Задача такая: "Для предстоящего чаепития фрёкеи Бок приготовила шесть различных сортов пирожных и положила пирожные каждого сорта на отдельную тарелку. Каждую минуту Карлсон подлетает к случайным образом выбранной тарелке и берёг с неё ровно одно пирожное. Сколько в среднем минут пройдёт до тех нор. пока у Карлсона не окажется два одинаковых пирожных?"
Я попробовал решить так: определяем CВ X = "ровно на i-ой попытке два пирожка совпали". Тогда P(1) = 0, P(2) = 1/6. А дальше чуть сложнее. P(3) - я подумал, что для того, чтобы ровно на третьем шаге совпали два пирожка надо, чтобы на втором шаге не совпали, то есть P(3) = (1-P(2)) * 2/6 . По аналогии P(4) = (1-P(2))*(1-P(3))*3/6. Домой пришел - посчитал, в сумме это всё дает больше единицы, а значит где-то ошибся. Могли бы помочь, где я ошибаюсь?

@темы: Теория вероятностей

18:50 

Условный экстремум (без окаймленного Гессиана)

Добрый день! На семинаре преподаватель объяснял пример, но мне не очень ясен алгоритм, могли бы помочь разобраться
Задача нахождения условного экстремума: $u=xyz, x^2+y^2+z^2=6, x+y+z=0$
Сначала все стандратно: находим стационарные точки, вот одна $M = 1,1,-2, \lambda_1 = 1/2, \lambda_2 = 1$, составляем гессиан:
$$\begin{pmatrix}
1& -2 &1 \\
-2& 1 &1 \\
1& 1& 1
\end{pmatrix}$$
По критерию Сильвестра он получается знакопеременным, поэтому мы делаем следующий шаг. Здесь уже я начинаю не понимать.
Ищем матрицу Якоби для двух условий, получаем матрицу
$$J = \begin{pmatrix}
2x & 2y &2z \\
1& 1 & 1
\end{pmatrix}$$
Или, если подставить числа,
$$J(M) = \begin{pmatrix}
2 & 2 & -4 \\
1& 1 & 1
\end{pmatrix}$$
Дальше мы почему-то составили уравнение: $J(M) \cdot \begin{pmatrix}
h_1 \\
h_2 \\
h_3
\end{pmatrix} = \vec{0}$
Из этой системы получаем : $h_3 = 0, h_1=-h_2$
Затем мы записали $h^{T} \cdot H \cdot h$ расписали это и получили $6h_2^2$, после чего сказали, что это минимум
------
Мне неясны наше действия начиная с момента составления матрицы Якоби. Во всех источниках составляется так называемый окаймленный Гессиан, а этот метод я даже не знаю как гуглить. Можете сказать как он называется, чтобы я смог загуглить примеры и теорию

@темы: Математический анализ

16:56 

Про ранг оператора

Пусть есть линейный оператор `A`, который переводит пространство `V` в `W`. Верно ли, что матрица оператора `A` имеет ранг, равный `dim(W)` ?
На всякий случай уточню откуда в у меня взялся вопрос. Если есть пространство многочленов не выше 3-ей степени, то оператор дифференциирования имеет матрицу с рангом `2`, отсюда у меня возникла такая гипотеза

@темы: Линейная алгебра

19:28 

Кратчайшее расстояние от прямой до окружности

Есть прямая `3x-4y+34=0` и окружность `x^2+y^2-8x+2y-8=0`. Надо найти кратчайшее расстояние между ними. Я поступил так:
1) Нашел касательную к окуржности в произвольной точке
2) Записал условие параллельности этой касательной с прямой `3x-4y+34=0`
3) Получил точку `x_0, y_0`, в которой это выполнено: `x_0=-9/sqrt(5)+4, y_0=12/sqrt(5)-1`
4) Осталось найти расстояние между двумя параллельными прямыми. Чтобы найти его пришлось проделать много вычислений

Вопрос такой: можно ли было как-то проще это сделать, задача довольно трудоемкой получилась.. Или это всё из-за плохих чисел?

@темы: Аналитическая геометрия

15:57 

Решить неравенство

Наткнулся в своих старых записях на неравенство: `3^(log_x 2) + 4^(log_x 3) <= 40`
Попытался решить - привести логарифм в степени к привычному `ln(x)`, после замена на `y` - дальше пусто. Более содержательных идей не было. Я бы и бросил это задачу, если бы не вольфрам, который выдал в ответе точный ответ (именно точный, выраженный через корни, логарифмы и тд!). Подскажите как такое можно решить?

@темы: Доказательство неравенств

20:30 

Неразрешимые гипотезы

Добрый день
Посмотрел последнее видео Numberphile про Проблему Гольдбаха. Они говорят, что возможно, её нельзя доказать, так как изначально мы определили мало аксиом и нужно ввести больше. И что из-за этого, возможно, эта проблема вообще недоказуема в нашей системе аксиом. У меня возник вопрос, а существует ли какая-нибудь гипотеза для которой доказано, что доказательства её подтверждения или опровержения просто не существует?

@темы: Литература

22:58 

Отношение равенства

Посмотрел определение симметричного и антисимметричного отношения. Взял для примера отношение равенства чисел. Получил, что оно одновременно антисимметричное и симметричное. Такое может быть?

@темы: Бинарные отношения

19:54 

Необходимое условие сходимости интеграла

Всю жизнь считал, что стемление подинтегральной функции к нулю является необходимым условием его сходимости. Оказалось не так, интеграл от `sqrt(x)*sin(x^2)` сходится. Почему так происходит? Почему для ряда есть такое условие, а для интеграла нет? Как доказать, что этот интеграл сходится?

@темы: Интегралы

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная