Записи пользователя: MestnyBomzh (список заголовков)
18:50 

Условный экстремум (без окаймленного Гессиана)

Добрый день! На семинаре преподаватель объяснял пример, но мне не очень ясен алгоритм, могли бы помочь разобраться
Задача нахождения условного экстремума: $u=xyz, x^2+y^2+z^2=6, x+y+z=0$
Сначала все стандратно: находим стационарные точки, вот одна $M = 1,1,-2, \lambda_1 = 1/2, \lambda_2 = 1$, составляем гессиан:
$$\begin{pmatrix}
1& -2 &1 \\
-2& 1 &1 \\
1& 1& 1
\end{pmatrix}$$
По критерию Сильвестра он получается знакопеременным, поэтому мы делаем следующий шаг. Здесь уже я начинаю не понимать.
Ищем матрицу Якоби для двух условий, получаем матрицу
$$J = \begin{pmatrix}
2x & 2y &2z \\
1& 1 & 1
\end{pmatrix}$$
Или, если подставить числа,
$$J(M) = \begin{pmatrix}
2 & 2 & -4 \\
1& 1 & 1
\end{pmatrix}$$
Дальше мы почему-то составили уравнение: $J(M) \cdot \begin{pmatrix}
h_1 \\
h_2 \\
h_3
\end{pmatrix} = \vec{0}$
Из этой системы получаем : $h_3 = 0, h_1=-h_2$
Затем мы записали $h^{T} \cdot H \cdot h$ расписали это и получили $6h_2^2$, после чего сказали, что это минимум
------
Мне неясны наше действия начиная с момента составления матрицы Якоби. Во всех источниках составляется так называемый окаймленный Гессиан, а этот метод я даже не знаю как гуглить. Можете сказать как он называется, чтобы я смог загуглить примеры и теорию

@темы: Математический анализ

16:56 

Про ранг оператора

Пусть есть линейный оператор `A`, который переводит пространство `V` в `W`. Верно ли, что матрица оператора `A` имеет ранг, равный `dim(W)` ?
На всякий случай уточню откуда в у меня взялся вопрос. Если есть пространство многочленов не выше 3-ей степени, то оператор дифференциирования имеет матрицу с рангом `2`, отсюда у меня возникла такая гипотеза

@темы: Линейная алгебра

19:28 

Кратчайшее расстояние от прямой до окружности

Есть прямая `3x-4y+34=0` и окружность `x^2+y^2-8x+2y-8=0`. Надо найти кратчайшее расстояние между ними. Я поступил так:
1) Нашел касательную к окуржности в произвольной точке
2) Записал условие параллельности этой касательной с прямой `3x-4y+34=0`
3) Получил точку `x_0, y_0`, в которой это выполнено: `x_0=-9/sqrt(5)+4, y_0=12/sqrt(5)-1`
4) Осталось найти расстояние между двумя параллельными прямыми. Чтобы найти его пришлось проделать много вычислений

Вопрос такой: можно ли было как-то проще это сделать, задача довольно трудоемкой получилась.. Или это всё из-за плохих чисел?

@темы: Аналитическая геометрия

15:57 

Решить неравенство

Наткнулся в своих старых записях на неравенство: `3^(log_x 2) + 4^(log_x 3) <= 40`
Попытался решить - привести логарифм в степени к привычному `ln(x)`, после замена на `y` - дальше пусто. Более содержательных идей не было. Я бы и бросил это задачу, если бы не вольфрам, который выдал в ответе точный ответ (именно точный, выраженный через корни, логарифмы и тд!). Подскажите как такое можно решить?

@темы: Доказательство неравенств

20:30 

Неразрешимые гипотезы

Добрый день
Посмотрел последнее видео Numberphile про Проблему Гольдбаха. Они говорят, что возможно, её нельзя доказать, так как изначально мы определили мало аксиом и нужно ввести больше. И что из-за этого, возможно, эта проблема вообще недоказуема в нашей системе аксиом. У меня возник вопрос, а существует ли какая-нибудь гипотеза для которой доказано, что доказательства её подтверждения или опровержения просто не существует?

@темы: Литература

22:58 

Отношение равенства

Посмотрел определение симметричного и антисимметричного отношения. Взял для примера отношение равенства чисел. Получил, что оно одновременно антисимметричное и симметричное. Такое может быть?

@темы: Бинарные отношения

19:54 

Необходимое условие сходимости интеграла

Всю жизнь считал, что стемление подинтегральной функции к нулю является необходимым условием его сходимости. Оказалось не так, интеграл от `sqrt(x)*sin(x^2)` сходится. Почему так происходит? Почему для ряда есть такое условие, а для интеграла нет? Как доказать, что этот интеграл сходится?

@темы: Интегралы

00:50 

Метод Лагранжа, условный экстремум

Верно ли я понимаю, что необходимое условие - это не существование частных производных или равенство их нулю?
Например, `F(u,v)=x-2sqrt(x)-y+2sqrt(y)`. Если искать частные производные, то получим, что при `x=0` и `y=0` производная (одна из) не существует. Какие точки в таком случае надо првоерять на экстремум и как?

@темы: Математический анализ

17:13 

Возведение матрицы в степень

Не могу найти как возводить матрицу в произвольную степень. Но слышал, что можно делать так: `A^(n) = C^(-1)*B^n*C`, где C - матрица из собственных векторов, B - диагональная матрица из собст. чисел. Формула кажется очень простой, но в интернете я не нашел упоминания о ней. Можете подтвердить, она правдива или нет?

@темы: Матрицы

22:06 

Минимальный путь/производная

есть точки A(0;6), B(20;9), C(a;0)
Найти a, что путь A->C->B будет кратчайшим.
Минимизировать сумму корней не смог. Есть ли какое-то другое решение?

@темы: Производная

02:27 

Тервер и мишень

Задача: По небольшой (точечной) цели ведется стрельба снарядами, радиус поражения которых равен R, т.е. цель поражается только в случае, если снаряд разорвался на расстоянии от цели, не превышающем величину R. Рассеивание при стрельбе нормальное, круговое с нулевым математическим ожиданием и СКО, равным С. Определить вероятность поражения цели при N независимых выстрелах.

Мой вопрос: что означает, что рассеивание - нормальная СВ? Сначала я подумал, что расстояние от точки попадания до центра мишени - это СВ, но тогда она может принимать значения только `>= 0`, что противоречит нормальному распределению. Так вот, можете помочь с введением CB, которая нормально распределена?

@темы: Теория вероятностей

13:42 

Два решения для задачи

Есть 10 карт. Выбираем 3 карты последовательно. Среди 10-ти карт была одна уникальная. Какова вероятность того, что она окажется среди трех выбранных?
У меня есть два решения, приводящие к разным ответам:
1) `C_(10)^2 / C_(10) ^3 = 3/8`
2) `1/10+9/10*1/9+9/10*8/9*1/8=0.3`
Оба решения кажется верными, но ответы разные. Помогите, пожалуйста, какое решение неверно и почему?

@темы: Теория вероятностей

09:37 

Степенной ряд

Добрый день.
Интересует следующий вопрос: пусть надо разложить функцию в степенной ряд в окрестности точки x_0. Вот только оказывается, что правее x_0 функция не определена вообще. Верно ли я понимаю, что в степенной ряд тогда разложить нельзя, так как не существуют производные?

@темы: Ряды

23:06 

Иррациональный заяц

Говорят, эту задачу решают еще в школах. Но я услышал её только недавно и так и не понял как её решать. Итак, есть тригонометрический круг . Заяц прыгает по окружности с целочисленной скоростью. Докажите, что он не окажется ни в какой точке более одного раза

@темы: Математический анализ

10:24 

Игра Пенни

Помнится, как-то всплывала тема игры Пенни. На ютубе вышло отличной видео на эту тему, хотел поделиться с сообществом
www.youtube.com/watch?v=Sa9jLWKrX0c

@темы: Интересная задача!

14:47 

Что больше?

Что больше `100^(300)` или `300!`?
Пытаюсь написать дробь: `(300*299*298....*100*99*...*1)/(100*...*100)`
Вообще пытаюсь доказать, что дробь больше единицы. Понятно, что со множителями `300,299,...,100` проблем нет, а вот дальше проблема возникает с оставшимися `99,98...1`. Я сначала подумал, что у нас все равно 200 превосходящих множителей, так что они перебьют, но как бы не так. Как оказалось: `(100+m)(100-m)<100^2` То есть если взять `99` в паре с `101`, то даже их произведение, деленное на 100^2 будет меньше единицы.
Подскажите как это решить. Задачка то простая, но никак не могу довести решение

@темы: Теория чисел

11:24 

Сходящийся интеграл

В одном из примеров из книжки Гелбаума, Олмстеда: "Контрпримеры в анализе" дан следующий пример:

У меня вопрос следующий: а зачем вообще `f(x)` определялась тут, как `f(x)=g(x)+1/x^2`? почему нельзя было просто положить `f(x)=g(x)`? Все равно стремления к нулю `1/x^2` не добавило, да и сходимости тоже

@темы: Интегралы

21:03 

Правило Кондорсе

Добрый день. Вопрос про правило Кондорсе. Считаем следующим образом: попарно сравниваем кандидатов, то есть сколько голосующих предпочитает одного кандидата другому. После строится мажоритарный граф.
Такой вопрос: если мы не можем сказать кто лучше, то в графе это ребро отсутствует вовсе?
Отсюда следует вывод, что это правило не строит отношение полного порядка (так как некоторые несравнимы получаются), верно?

@темы: Дискретная математика

17:20 

Парадокс теории вероятностей

Здравствуйте. Сегодня наткнулся на следующую задачу
Вероятность того, что родственник мужчины также мужчина — один к трем (не 50 на 50).
Условие:Вы встречаете парня по имени, допустим, Чад. Чад говорит вам, что у него есть родственник (брат или сестра), но он больше ничего о нем вам не скажет. Какова вероятность того, что родственник Чада — брат? Должно быть 50 на 50, верно? Тот факт, что Чад - мужчина, не может иметь никакого влияния на пол его родственника.

В решении они ссылаются на 4 возможных случая: мм, мд, дм, дд. Таким образом, откидывая дд, получаем `1/3`. У меня вопрос, почему они не добавили мм еще один раз? Ведь судя по их логике брат (если он есть), может быть как старше, так и младше.

@темы: Теория вероятностей

14:58 

Делимость

Нужно доказать, что число `y^2/(y-1)` не является целым для любого положительного целого игрек, кроме случая `y=2`.
Я как доказывал: есть `y` нечетное, то, очевидно, делится не будет.
Теперь пусть `y` четное. Тогда пусть `y^2/(y-1)=x`, отсюда `y^2-xy+x=0` => `D=x^2-4x`. Дискриминант должен быть целом, то есть `x^2-4x=k^2` => `x^2-4x-k^2=0`, снова дискриминант: `sqrt(D)=2*sqrt(4+k^2)`. А этот корень нельзя вычислить, так как расстояние между двумя квадратами не может быть равно 4 (кроме случая 0 и 4)
Но мне кажется это слишком сложным док-вом. Можно ли что-то проще?

@темы: Теория чисел

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная