• ↓
  • ↑
  • ⇑
 
Записи пользователя: wpoms. (список заголовков)
00:59 

wpoms.
Step by step ...

Федеральное математическое соревнование. Самые красивые задачи (на нем. яз.) - Springer, 2016
Сборник содержит материалы одной из математических олимпиад Германии — Федерального математического соревнования — за 1970–2015 годы.

Сайт олимпиады
Книга


@темы: Литература, Олимпиадные задачи

13:31 

Математическая олимпиада в Литве

wpoms.
Step by step ...
Математическая олимпиада в Литве


Республиканская олимпиада школьников по математике

Олимпиада проводится ежегодно в три этапа: школьный, региональный и национальный.
Школьникам предлагаются разные комплекты заданий для каждого класса. Школьники 9-12 классов принимают участи во всех этапах, школьники 5-8 классов только в первых двух.

Республиканская олимпиада: задачи


@темы: Олимпиадные задачи

13:25 

Математическая олимпиада в Грузии

wpoms.
Step by step ...
Математическая олимпиада в Грузии


Республиканская олимпиада школьников по математике

Олимпиада проводится ежегодно в три этапа: школьный, региональный и национальный.

Республиканская олимпиада: задачи


@темы: Олимпиадные задачи

13:24 

Математическая олимпиада в Латвии

wpoms.
Step by step ...
Математическая олимпиада в Латвии


Республиканская олимпиада школьников по математике

Олимпиада проводится ежегодно в три этапа: школьный, региональный и национальный. Лучшие участники каждого этапа приглашаются к участию в следующем этапе.
Школьникам предлагаются разные комплекты заданий для каждого класса. Школьники 9-12 классов принимают участи во всех этапах, школьники 5-8 классов только в первых двух.
Первое соревнование по решению задач в Латвии состоялось в 1945-46 году. Регулярно подобные соревнования проводятся с 1949-50 учебного года.

Республиканская олимпиада: задачи


@темы: Олимпиадные задачи

13:10 

Математическая олимпиада в Армении

wpoms.
Step by step ...
Математическая олимпиада в Армении


Республиканская олимпиада школьников по математике

Олимпиада проводится ежегодно в три этапа: школьный, региональный и национальный. Отличает от других олимпиад наличие двух вариантов --- А и Б. Задания последнего более простые. Финал для варианта Б проводится на пару недель раньше финала для варианта А и его победители и призеры получают возможность принять участие в финале для варианта А.

Республиканская олимпиада: задачи


@темы: Олимпиадные задачи

16:38 

Математическая олимпиада в Эстонии

wpoms.
Step by step ...
Математическая олимпиада в Эстонии


Республиканская олимпиада школьников по математике

Олимпиада проводится ежегодно в три этапа: школьный, региональный и национальный. Лучшие участники каждого этапа приглашаются к участию в следующем этапе.
Школьникам предлагаются разные комплекты заданий для каждого класса. Школьники 9-12 классов принимают участи во всех этапах, школьники 7-8 классов только в первых двух. Школьный этап обычно проводится в декабре, региональный в январе или феврале, национальный -- в марте или апреле в Тарту. Задачи для каждого класса обычно соответствуют школьной программе, задачи последнего этапа могут выходить за рамки школьной программы.
Первое соревнование по решению задач в Эстонии состоялось в 1950 году. Следующее, которое состоялось в 1954 году, было названо первой эстонской математической олимпиадой.

Республиканская олимпиада: задачи


@темы: Олимпиадные задачи

16:11 

Математическая олимпиада в Казахстане

wpoms.
Step by step ...
Математическая олимпиада в Казахстане


Республиканская олимпиада школьников по математике

Эта олимпиада является основной и самой массовой олимпиадой старшеклассников, проводимой в Казахстане.
Основными целями и задачами олимпиады являются пропаганда научных знаний и развитие у учащихся интереса к научной деятельности, создание необходимых условий для выявления одаренных детей, подбор и подготовка учащихся к участию в международных олимпиадах, поднятие престижа образования в Республике Казахстан.
читать дальше

Республиканская олимпиада: задачи


@темы: Олимпиадные задачи

15:43 

wpoms.
Step by step ...

Кунгожин А. М., Кунгожин М. А., Байсалов Е. Р., Елиусизов Д. А. Математические олимпиады: Азиатско-Тихоокеанская, "Шелковый путь" - МЦНМО, 2017, 208 стр.
Сборник содержит материалы двух математических олимпиад: Азиатско-Тихоокеанской и «Шёлковый путь»—за 2002–2017 годы. Все задачи приведены с решениями и при необходимости сопровождаются рисунками и формулировками используемых фактов и теорем, не входящими в школьную программу.
Данные олимпиады проходят более чем в тридцати странах одновременно (включая Россию, Казахстан, США, Японию, Южную Корею и др.) и входят в перечень международных олимпиад Министерства образования и науки Республики Казахстан.
Книга будет полезна школьникам, студентам, педагогам и любителям математики для подготовки к олимпиадам высокого уровня, знакомства с олимпиадными идеями и методами.

Посмотреть задачи: Олимпиада «Шелковый путь», Азиатско-Тихоокеанская математическая олимпиада
Купить: Математическая книга


@темы: Ссылки, Литература

14:54 

Математическая олимпиада в Албании

wpoms.
Step by step ...
Математическая олимпиада в Албании



Олимпиада проводится в три этапа для учащихся 9-12 классов средних школ. Первый этап проходит в школьных округах, в декабре. Второй этап происходится на региональном или районном уровне в феврале. В нем участвуют учащиеся, набравшие не менее 70% баллов на первом этапе. Третий этап является заключительным этапом и проводится в Тиране или другом городе, выбранном Министерством образования и науки, как правило, в марте. В этом этапе участвуют учащиеся, которые набрали более чем 50% баллов на втором этапе. В третьем этапе участвуют, как правило, около 50-60 учащихся из каждой параллели, то есть всего около 200-250 учащихся.
После завершения Национальной олимпиады (как правило, в середине марта), по шесть лучших учащихся трех категорий (классы 10, 11 и 12) и 1-3 лучших учащихся 9 класса, всего около 20 учащихся принимаю участие в отборочном соревновании, на основе которого формируется команда, которая принимает участие в Балканской олимпиаде по математике. В этом соревновании, в отличии от предыдущих этапов, задания общие для всех категорий учащихся.
После Балканской олимпиады проводится еще одно отборочное соревнование, на основе которого формируется команда, которая принимает участие в IMO.

Задания олимпиад можно посмотреть тут.


@темы: Олимпиадные задачи

21:36 

Неравенство "на шару"

wpoms.
Step by step ...


Неотрицательные действительные числа `a, b, c` удовлетворяют равенству `a^2 + b^2 + c^2 = 1`. Докажите, что
`{a}/{b^2 + 1} + {b}/{c^2 + 1} + {c}/{a^2 + 1} \geq {3}/{4}*(a\sqrt {a} + b\sqrt {b} + c\sqrt {c})^2`.



@темы: Доказательство неравенств

19:58 

В треугольнике

wpoms.
Step by step ...


В остроугольном треугольнике `ABC` точки `M` и `N` лежат на сторонах `AC` и `BC` соответственно, точка `K` - середина `MN`. Описанные окружности треугольников `ACN` и `BCM` пересекаются повторно в точке `D`. Докажите, что прямая `CD` проходит через центр описанной окружности `O` треугольника `ABC` тогда и только тогда, когда `K` лежит на срединном перпендикуляре отрезка `AB`.



@темы: Планиметрия

09:16 

Математическая олимпиада в Австрии

wpoms.
Step by step ...
Математическая олимпиада в Австрии




Österreichische Mathematik Olympiade, известная как ÖMO, - Австрийсткая математическая олимпиада. Она была основана после первого приглашения Австрии к участию в международной математической олимпиаде (IMO). Её основной целью является отбор и подготовка австрийских команд к участию в международных соревнованиях. Для достижения этой цели используются различные методы - это и подготовительные курсы в школах, и двухнедельные сборы кандидатов в национальные команды.

Школьный и региональный уровень
Одаренные школьники, желающие принять участие в ÖMO, обычно посещают подготовительные курсы в своих школах. Школьники начинают заниматься на курсах "начального уровня" в 8 или 9 классах (в 14-15 лет) и позже переходят на курсы "продвинутого уровня". В конце марта для слушателей этих курсов и в апреле для начинающих проводятся Kurswettbewerb, соревнования, определяющие, кто примет участие в региональных соревнованиях. Школьники, которые не посещали подготовительные курсы, желающие принять участие в олимпиаде, могут выступить в специальном квалификационном соревновании. Школьники 8 и 9 классов участвуют в Landeswettbewerbe, т.е. в провинциальных соревнованиях, обычно в июне. Для них не проводятся соревнования национального уровня. Школьники старших классов принимают участие в соревнованиях регионального уровня, называемых Gebietswettbewerbe (GWB). В настоящий момент провинции разбиты на три региона: Vienna, Lower Austria, Burgenland (=Восток) - Styria, Carinthia (=Юг) - Upper Austria, Salzburg, Tyrol, Vorarlberg (=Запад).

Национальный уровень (The Bundeswettbewerb)
Лучшие, по результатам региональных соревнований, принимают участие в недельных сборах в Raach am Hochgebirge (Lower Austria), которые проводятся во второй половине мая. По завершении сборов проводится Zwischenwettbewerb (промежуточное соревнование), известное также как Bundeswettbewerb Teil 1 (федеральное соревнование, 1-ая часть). Для лучших проводятся еще одни недельные сборы, после которых проводится финальное двухдневное соревнование, Bundeswettbewerb (федеральное соревнование, 2-ая часть).

Сайт олимпиады


@темы: Олимпиадные задачи

21:38 

Ааааа

wpoms.
Step by step ...


Действительные числа `x, y, a` удовлетворяют `x + y = x^3 + y^3 = x^5 + y^5 = a`. Найдите все возможные значения `a`.



@темы: Системы НЕлинейных уравнений

21:40 

"Давай делиться"

wpoms.
Step by step ...


Найдите все натуральные числа `x, y` такие, что `y` делит `(x^2 + 1)` и `x^2` делит `(y^3 + 1)`.



@темы: Теория чисел

21:18 

wpoms.
Step by step ...
EGMO-2017

USA, 4, 0, 0, 148
Ukraine, 2, 2, 0, 126
Russia, 2, 2, 0, 125 (Ekaterina Bogdanova (С), Kamilya Mukhametshina(С), Izabella Tolokno (З), Maria Dmitrieva (З))
Hungary, 2, 2, 0, 106
Serbia, 1, 2, 1, 96
Israel, 0, 3, 0, 88

www.egmo.org


@темы: Олимпиадные задачи

21:19 

Видит - не видит, существует - не существует

wpoms.
Step by step ...


Для двух точек `P` и `Q` с целыми координатами, мы говорим, что `P` видит `Q` если отрезок `PQ` не содержит никаких других точек с целыми координатами. `n`-цикл представляет собой последовательность `n` точек с целыми координатами `P_1, \ P_2, \ ..., \ P_n`, для которых выполнены следующие условия:
а) `P_i` видит `P_{i + 1}` для `1 <= i <= n - 1` и `P_n` видит `P_1`;
б) `P_i` не видит `P_j`, если не выполняется условие пункта а;
в) никакие три точки не лежат на одной прямой.
Существует ли `100`-цикл?



@темы: Планиметрия

21:22 

Окружности и касательные

wpoms.
Step by step ...


Две окружности касаются друг друга внутренним образом в точке `A`. Докажите, что геометрическим местом центров окружностей, вписанных в треугольник `AQP`, является окружность, касающаяся данных окружностей в точке `A`, если точки `P` и `Q` выбираются на внешней окружности так, что хорда `PQ` является касательной внутренней окружности.



@темы: Планиметрия

12:05 

Выборы

wpoms.
Step by step ...


В Нечётненской начальной школе нечетное число классов. Каждый класс содержит нечетное число учеников. Один ученик из каждого класса будет выбран для формирования школьного совета. Докажите, что следующие два утверждения логически эквивалентны.
а) Способов сформировать школьный совет, который включает в себя нечетное число мальчиков больше, чем способов формирования школьного совета, который включает в себя нечетное число девочек.
б) Имеется нечетное число классов, в которых мальчиков больше, чем девочек.



@темы: Дискретная математика

08:20 

Последовательность

wpoms.
Step by step ...


Первый член последовательности `x_1` равен `2014`. Каждый последующий член последовательности определяется рекуррентной формулой
`x_{n + 1} = {(sqrt{2} + 1)*x_n - 1}/{(sqrt{2} + 1) + x_n}`

Найти 2015-й член последовательности `x_{2015}`.



@темы: Олимпиадные задачи

20:25 

Функции натурального аргумента

wpoms.
Step by step ...


Найдите все функции `f(n): NN -> NN`, удовлетворяющие следующему условию: для любых натуральных чисел `a`, `b` и `c` таких, что `1/a + 1/b = 1/c`, выполняется равенство `1/{f(a)} + 1/{f(b)} = 1/{f(c)}`.



@темы: Функции

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная